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Abstract 

Following a comparison of current alternative approaches for modelling and prediction of algal blooms, artificial neural 
networks are introduced and applied as a new, promising model type. The neural network applications were developed and 
validated by limnological time-series from four different freshwater systems. The water-specific time-series comprised cell 
numbers or biomass of the ten dominating algae species as observed over up to twelve years and the measured 
environmental driving variables. The resulting predictions on succession, timing and magnitudes of algal species indicate 
that artificial neural networks can fit the complexity and nonlinearity of ecological phenomena apparently to a high degree. 
© 1997 Elsevier Science B.V. 
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1. Introduct ion 

Aquatic ecosystems are very complex due the 
diversity and connections of  the components govern- 
ing the system's dynamics. Nonlinear dynamics un- 
derlie the ecosystem behavior and pass it through 
successional stages aiming at a steady state. This 
process is more complicated when a single species or 
substance rapidly increases in number or concentra- 
tion, whereby they become a pollutant for the 
ecosystem and can subsequently affect their sur- 
roundings drastically. 

* Corresponding author. Tel.: +61-8-3037951; fax: +61-8- 
3037956. 

Explosion-like formations of  algal blooms in- 
creasingly pollute both: salt and fresh water ecosys- 
tems throughout the world. They lead to enormous 
costs by affecting seafood, drinking water supply, 
aquaculture systems and tourism. In addition to the 
characteristics described by Hallegraeff (1993), the 
following harmful algal blooms can be distinguished: 

(1) Species which cause water discolorations. 
Algae can grow in abundance to the extent that they 
change the color of  water to red, brown or green. 
Resulting water discoloration can significantly im- 
pair recreational uses of  aquatic systems. In shallow 
waters, blooms can grow occasionally so dense that 
they cause, not only water discoloration but also fish 
and invertebrate mortality due to oxygen depletion. 
(2) Species which affect human health by toxins. 

0304-3800/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved. 
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Blue-green algal toxins are contained within the 
living cells and will be released by cell cracking or 
decay. The toxins can find their way to humans 
through either drinking water or the food chain. As 
reported by Falconer (1993) algal toxins in solution 
pass through the normal water treatment and are 
resistent to boiling. They can cause gastroenteritis, 
hepatoenteritis and toxic injury to the liver. Addi- 
tionally, the occurrence of fish and shellfish poison- 
ings as reported by Todd (1993) can considerably 
reduce consumption and export of seafood. (3) 
Species which cause high mortality offish and inver- 
tebrates. Barica (1978) reported massive seasonal 
mortalities of rainbow trout during summer in Cana- 
dian prairie lakes caused by blue-green filamentous 
algae Aphanizomenonflos-aqua and related degrada- 
tion products. Some algae species can cause serious 
damage in aquaculture systems by damming or clog- 
ging fish gills. Okaichi (1989) reported on a bloom 
of Chattonella anfiqua in the Japanese Seto Island 
Sea which killed 500 million dollars worth of caged 
yellow-tail fish. (4) Species which impair water 
treatment by their biomass, taste and odor. A1- 

gogenic organic matter can seriously impede the 
supply of drinking water by clogging of filters, 
inhibition of flocculation processes and encrustation 
of pipes in water works. Some species such as 
Synura uvella can cause taste and odor problems in 
drinking water and give rise to customer complaints 
(Burlingame et al., 1992). 

Most of these deleterious effects might be pre- 
vented or minimized if algal blooms could be pre- 
dicted in a early stage. This is a permanent challenge 
for modelers worldwide. 

In the context of this paper a comparison of 
current alternative approaches for modelling and pre- 
diction of algal blooms is made. Artificial neural 
networks are then introduced and applied as a new, 
promising model type. The neural network applica- 
tions were developed and validated by limnological 
time series from freshwater lakes in Japan and Fin- 
land and an Australian river. The resulting predic- 
tions on succession, timing and magnitudes of algal 
species indicated that artificial neural networks fit 
the complexity and nonlinearity of ecological phe- 
nomena apparently to a high degree. 
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Fig. 1. Factors and processes controlling phytoplankton dynamics (from Capblancq and Catalan, 1994). 
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2. Modelling and prediction of phytoplankton in 
freshwater systems 

To model the dynamics of phytoplankton popula- 
tions, the limiting, physiological and multiple factors 
controlling their growth and composition have to be 
considered as represented in Fig. 1. 

The validity of the model depends upon the avail- 
ability of either cross-sectional or time-series data 
and the choice of the modelling technique. Limno- 
logical cross-sectional data are obtained from mea- 
surements of different lakes (e.g. of equatorial lakes) 
where each data point represents a seasonally or 
annually averaged set of measurements for a differ- 
ent lake. Limnological time-series data is composed 
of a deterministic and a random component. The 
deterministic component changes over time in a reg- 
ular and'predictable way caused by underlying pro- 
cesses. It can be characterized by a trend, periodicity 
and serial dependency. The trend is characterized by 
the long-term tendency of observations to increase or 
to decrease, e.g. the increased phosphorus concentra- 
tions in lakes due to cultural eutrophication. The 
periodicity occurs when observations follow a pat- 
tern that changes regularly with time, e.g. diurnal 
changes of oxygen concentration or the seasonal 
succession of phytoplankton in lakes. The periodicity 
can be caused by other periodic phenomena such as 
limit cycles of prey-predator relationships between 
phytoplankton and zooplankton. The serial depen- 
dency occurs when observations in the time series 
are dependent on past observations, e.g. the phos- 
phorus concentration of lakes in spring depends on 
the phosphorus level in the previous winter. The 
random component is superimposed on the determin- 
istic component and can be characterized by short- 
term fluctuations due to transitory or unexplained 
factors. Their nature can be truly random or chaotic. 
Truly random components such as the level of water 
in a river can be characterized by a statistical distri- 
bution function or by the statistical moments of the 
data. Chaotic components of a time series are charac- 
terized by values that appear to be randomly dis- 
tributed and non-periodic but are the result of a 
deterministic process due to underlying nonlinear 
dynamics. 

Table ! lists some characteristics of different 
types of phytoplankton models. Empirical models are 
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based on cross-section data and predict mean sea- 
sonal or annual chlorophyll-a concentrations (e.g. 
Vollenweider, 1976). They utilize correlative rela- 
tionships with limiting factors such as water trans- 
parency and nutrients. Deterministic models are based 
on cross-section and time-series data and simulate 
trends, seasonality and serial dependencies controlled 
by limiting, physiological and multiple factors. De- 
terministic ecosystem models calculate the daily 
biomass of functional algal groups within the pelagic 
food-web (e.g. Park et al., 1979) while deterministic 
process models calculate the hourly biomass of sepa- 
rate algae species (e.g. Okada and Aiba, 1983). 

Time-series analysis models predict time-depen- 
dent chlorophyll-a based on multivariate relation- 
ships with limiting and multiple factors (e.g. White- 
head and Hornberger, 1984). Heuristic word models 
predict qualitatively the seasonal dynamics of phyto- 
plankton composition by combining species assem- 
blages with causal knowledge on limiting, physio- 
logical and multiple factors (e.g. Sommer et al., 
1986). Fuzzy models quantify periodically (e.g. 
monthly) the possible dominance of algal species 
(e.g. Recknagel et al., 1994). The possibility of the 
occurrence of algal species is calculated by member- 
ship functions depending on seasons, limiting, 
physiological and multiple factors. Artificial neural 
network models are driven by time-series data of 
algal species and control factors (French and Reck- 
nagel, 1994). They allow to predict timing and mag- 
nitudes of algal species based upon the strength of 

associations with limiting and multiple control fac- 
tors. 

3. T ime  series  model l ing  o f  algal b looms  by artifi- 
cial neural  ne tworks  

3.1. General approach 

Artificial neural networks typically consist of an 
input layer, hidden layers and an output layer. In the 
input layer the external inputs such as surface irradi- 
ance and nutrient concentrations, and the density and 
composition of zooplankton are represented by nodes. 
In the output layer interesting outputs such as cell 
numbers of dominating algal species are represented 
by nodes. Neural networks determine the weighted 
connections between input and output nodes by in- 
terconnected computing elements, the neurons, where 
feed-forward or feedback algorithms are utilized. 
The neurons are located in the hidden layers and 
feed a nonlinear function, such as a sigmoid func- 
tion, by the sum of its inputs either coming from 
input nodes by feed-forward or from output nodes by 
feedback. The resulting value of a neuron is multi- 
plied by a weighting factor after passing the nonlin- 
ear function. Therefore each neuron has a separate 
weight parameter for each connection with the input 
and output nodes, the so-called firing rate. A learn- 
ing process, the training, forms the interconnections 
between the neurons and the nodes. It is accom- 
plished using measured inputs, represented in the 

Table 2 
Characteristics of four freshwater systems and corresponding neural network models 

Lake Kasumigaura Lake Biwa (Japan) Lake Tuusulanjaervi River Darling 
(Japan) (Finland) (Australia) 

Trophic State hypertrophic meso-/eutrophic eu-/hypertropic hypertrophic 
Morphometry: 
- Maximum depth (m) 7 103 10 
- Mean depth (m) 4 41 3.2 
- Surface area (km 2) 220 670 5.95 
- Volume (million m 3) 900 27800 19.15 
Range of water temperature (°C) 2.1-32.0 3.3-3 I. 1 0.0-22.4 7.5-29.5 
Mean water retention time (year) 0.55 5.5 0.68 0.002 
Structure of neural network see Fig. 2 see Fig. 3 see Fig. 4 see Fig. 5 
Time series for training (years) 8 ('84, '85, '87, 6 ('84, '85, '88, 10 ('72, '74, '75, 10 ('80-'86, '87-'90, 

'88, '89, '90, '91, '89, '90, '91) '76, '81, '82, ' 8 3 ,  '91-'92) 
'92) '84, '85, '86) 

Time series for validation (years) 2 ('86, '93) 2 ('86, '87) 2 ('73, '87) 2 ('86-'87, '90-'91) 
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Input Layer Hidden Layer Output Layer 

OrthoPhosphate Img/ll OV-.-...~W(input) I, I W(output) I. ] ~ )  Microcystis aeruginosa [cells/roll 

Nitrate Im~l ~ ~  fl:) Oscillatoria [cells/roll 

soco  Depth,°, P hom di.m t.ll  , 

Water Dep  ,.I " Oompho phaena  ,l n t 

Oxy enl° l  nahaena osa oae oe, n , 

Water Temperature I'el C ) ( , , . . ~ ~ x ~  / / / ~  Microcystis wesenbergii [cells/roll 

Cladocera Density lind.al (,~,Y/ ~ ,,.,, Cyclotella sp. 1 [cells/roll 

Copepoda Density lind./ll (.y'--~w(inpu0 k. h W(output) h. °~'X..) Anabaena affinis [cells/ml] 

Fig. 2. Neural network structure for Lake Kasumigaura (Japan). 

input layer, and measured outputs, represented in the 
output layer. The strength of the interconnections is 
adjusted using an error convergence technique such 
as the back-propagation algorithm. The aim of  the 
training of a neural network is to minimize the 
output error with respect to the known desired out- 
put. The output error is defined to be the sum of the 
differences between the network outputs and the 
measured outputs they are supposed to predict. To 
meet the aim of minimizing the output error can be 
supported additionally by optimization techniques 
such as the method of steepest descent. Once formed 
by training, the interconnections may remain fixed in 

the hidden layer and the neural network can be used 
for predictions. 

The neural network shell EXPLORER from Neu- 
ral Ware. Inc. (1993) was used for modelling of  algal 
blooms in four different freshwater systems. EX- 
PLORER is a feed-forward network with backpropa- 
gation for training. For each of the four applications 
the hyperbolic function was chosen to calculate the 
firing rates. The numbers of  hidden layers, nodes and 
neurons as well as learning rates and momenta  have 
been used as control parameters to find optimum 
training and prediction results. The training of any 
network involved 500,000 iterations. 

Ortho Phosphate [mg/l] 

Nitrate [mg/l] 

Dissolved Silica [mg/l] 

Secchi depth [m] 

WaterTemperature [°C] 

Dissolved Oxygen [mg/l] 

pn [-1 

Wind Speed [m/sl 

Weather 
[0-fine,0.5-cloudy, 1 -rain] 

Chlorophyll a [ng/ll 

I n p u t ~ y e r  

< 

C W(input) k, h 

Hidden Layer Output Layer 

~7~ Uroglena americana [cells/ml] 

Coelastrum cambricum [cells/ml] 

• ~ ~ Asterionella formosa [cells/mll 

~ )  Melosira grannlata [cells/ml] 

~ )  Ankistrodesmus fal.v.mirabile [cellslmll 
• % 

Dictyosphaerium sp. [cells/ml] 

~ Daclylosphaerium jufisii [cells/roll 

W(output) h, m Cyclotella stelligera [cells/°l] 

Fig. 3. Neural network structure for Lake Biwa (Japan). 
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Input Layer 

Nitrate (mg/l) 

OrthoPhosphate (mg/I) C ~  

Photosynthetic Active 
Radiation (MJ/m2d) 

Water Temperature C ~  ~ 
(°C) 

Oxygen (mg/l) C ~  

Stratification C ~  
(O=no, 1--yes) 

Hidden Layer Outlmt Layer 

~ : )  Microcystis (mg/l) 

~ )  Aphanizomenon (mg/l) 

Oscillatofia (rag/l) 

Anabaena (mg/I) 

Melosira (mg/l) 

~ )  Stephanodiseus (mg/l) 

C~ptomonas (mg/l) 

) Pediastrum (mg/I) 

Closterium (mg/I) 

Trachelomon~s (mg/I) 

Fig. 4. Neural network structure for Lake Tuusulanjaervi (Finland). 

3.2. Case studies 

Table 2 summarizes information about the four 
freshwater systems under investigation and the corre- 
sponding neural network models. Figs. 2-5  illustrate 

Input Layer Hidden Layer 

Bicarbonate (me/l) 

Silica (mg/l) C)~ 
Total Nitrogen 
(mgN/l) ( ~  
Ortho Phosphate C ~  
(mg/l) 

Turbidity (NTU) C ~  

Coiour O~u) C ~  

Water Temperature C ~  
(*C) 

p" 

Conductivity C ~  
(uS/cm @25 °C) 

Flow (Ml/d) 

W(input)k,h ~ ~ - ' ~  

Fig. 5. Neural network structure for River Darling (Australia). 

the specific structures of the water specific neural 
network models. 

As can be seen in Table 2 the neural network 
approach has been applied to very different freshwa- 
ter systems in the framework of this paper. The Lake 

OutputLayer 

w ........ ~,, ~ Nostoeales (cellgml) 

Anabaena (cellshnl) 

Microcystis (cells/rid) 

Non-Hagellates - cyanophyceae 
(oslls/ml) 

Ulothricales (cells/ml) 

Planctonema (cells/ml) 

Flagellates (ceils/ral) 

Chlorococcales (cells/ml) 

Odorococcales-kerratococcus 
(cells/ml) 

Unidentified Flagellates 
(¢ells/ml) 
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Lake  Kasumigaura : Neural Network Training 

Microcystis aeruginosa 
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Fig. 6. Validation of training results for Microcystis, Oscillatoria and Phormidium in Lake Kasumigaura (Japan). 
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Lake Kasumigaura : Neural Network Prediction 
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Fig. 7. Validation of  prediction results for Microcystis, Oscillatoria and Phormidium in Lake Kasumigaura (Japan). 
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Biwa is a deep, stratified lake with a water retention 
time of 5.5 years. This lake has meso- to eutrophic 
conditions where diatoms, green and yellow-green 
algae are most common. The Lake Kasumigaura is a 
large and very shallow lake with a retention time of 
only 0.55 years. Because of hypertrophic conditions, 
blue-green algae dominate in the Lake Kasumigaura. 
Both Japanese lakes are located between the 35th 
and 36th Northern latitude with similar ranges of 
annual solar radiation and water temperature. Com- 

prehensive limnological time-series have been col- 
lected for both lakes over more than 10 years 
(Hanazato and Aizaki, 1991; Takamura et al., 1992; 
Wakabayashi et al., 1985; Wakabayashi et al., 1986; 
Wakabayashi et al., 1991; Wakabayashi et al., 1994). 

The Finish Lake Tuusulanjaervi is located at the 
62nd Northern latitude and has therefore different 
light and temperature conditions compared with the 
temperate Japanese lakes. Lake Tuusulanjaervi has 
hypertrophic conditions with a high abundance of 

Lake Biwa : Neural Network Training 

.Output nodes : 10 
Meiosira granulata (ceas/ml) Hidden nodes : 20, 10 

Learning rate : 0.9, 0.3, 0.25, 0.15 
~ 0 ~  Mon~ntum : 0.6, 0.4, 0.4, 0.4 

X ;  " 

1000 + 
501)+ " , .  

_L " ~ ' ~  1984 1985 1988 1989 1990 1991 -500 

Output nodes : 5 
Meloska granulata (cclls/rnl) Hidden nodes : 20 

Learning rate : 0.9, 0.3, 0.15 
3500 T Momentum : 0.6, 0.4, 0.4 

/ 

1500 

. 5 O 0 ~  ~" 1984 ~Lr 'u1985 ~ " - ' i 9 8 8  -'ltr"a 1989 ~ 1990 1991 

Melosira granulata (celk/ml) 

35O0 

2OO0 
1500 
10O0 

01 
-5O0 _I_ 

Output nodes : 1 
Hidden nodes : 20, 10 
Learning rate : 0.9, 0,3, 0.25, 0.15 
Momentum : 0.6, 0.4, 0.4, 0.4 

1984 1985 1988 1989 1990 1991 

. . . . .  Measured ~ Predicted 

Fig. 8. Validation of training results for Melosira granulata in Lake Biwa (Japan) by different structures of the neural network model. 
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blue-green algae. Limnological time-series of Lake 
Tuusulanjaervi have been documented by Mutanen 
and Varis (1989) and Mutanen et ai. (1989). 

The River Darling stretches from subtropical to 
temperate regions in Australia and flows into the 
River Murray. Limnological time-series data was 
available from the site Burtundy (Sallivan et al., 
1988; Hoetzel and Croome, 1994), where the River 
Darling has extremely variable flows during the sea- 

sons and tends to have blooms of blue-green algae 
in summer. 

The neural network structures applied to the four 
freshwaters have been defined in accordance with 
the data available from water quality and plankton 
measurements. The input layers consider measured 
data of control factors for algal growth, while the 
output layers represent cell numbers or biomass data 
for the ten dominant algae species during the time of 

Lake Biwa : Neural Network Prediction 

Output nodes : 10 
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Fig. 9. Validation of prediction results for Melosira granulata in Lake Biwa  (Japan) by different structures of  the neural network model.  
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investigation. The algal composition of the output 
layers differs between the four freshwater systems. 
The more complete and accurate the input layers 
reflect the control factors accordingly to Fig. 1, the 
better the network is expected to fit observed output 
data during training and validation. While all input 
layers of the four neural network models use data on 

limiting nutrients, water temperature and light condi- 
tions, density data of the zooplankton groups Ro- 
tifera, Cladocera and Copepoda were available only 
for Lake Kasumigaura (see Fig. 2). In the input layer 
of the neural network model for River Darling (see 
Fig. 5) water flow is considered additionally as a 
very import characteristic of conditions in rivers. 

Lake Tuusulanjarvi: Neural Network Training 

Meloska (rag/l) 

50 • 
• 
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I 
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Fig. 10, Validation of training results for Melosira granulata in Lake Tuusulanjaervi (Finland) by different structures of  the neural network 

model. 



22 F. Recknagel et al. / Ecological Modelling 96 (1997) 11-28 

4. Validation of  the neural network models  

The neural network model for the Lake Kasumi- 
gaura (see Fig. 2) was trained with measured input 
and output data from 8 years. For the validation of 
model predictions, data of the two independent years 
1986 and 1993 have been used. In Figs. 6 and 7 the 
training and prediction results are represented for the 

blue green algae Microcystis, Oscilatoria and 
Phormidium in Lake Kasumigaura. Whilst the train- 
ing data closely matched, this did not apply to the 
predictions. The timing and magnitude of an ob- 
served bloom of Microcystis in 1986 has been pre- 
dicted well (see Fig. 7). In 1993 Microcystis hasn't 
been observed and only negligible dynamics have 
been predicted. The observed peak of Oscillatoria in 
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the late spring of 1986 is predicted by the model 
with some time delay but well corresponding magni- 
tude. But in 1993 the three large peaks of Oscillato- 
ria observed in summer and autumn haven't been 
predicted whilst the small spring peak is overesti- 
mated, corresponding with the observed summer 
peaks. The years 1986 and 1993 have been chosen 
for validation because a succession from Microcystis 
to Oscillatoria in the late eighties had been observed 

in Lake Kasumigaura (Takamura et al., 1992). Re- 
gardless of timing of the spring peak of Oscillatoria 
in 1993, the model predicts the species succession 
qualitatively well. The predictions of dynamics of 
Phormidium are reasonable in timing and magni- 
tudes for 1993 but nonrealistic for 1986. 

The neural network model for the Lake Biwa (see 
Fig. 3) was trained by time-series data of six years 
and validated by data of the independent years 1986 
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Fig. 12. Validation of training results for Ulothricales in the River  Darling (Australia) by different structures of  the neural network model. 
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and 1987. The results show that predictions for the 
diatom Melosira granulata have been improved by 
changed numbers of output nodes (see Fig. 9). After 
training with one output node the model predicted 
the observed peaks of Melosira granulata in 1986 
and 1987 the best (see Fig. 8). Similar findings 
appeared with predictions of Melosira granulata by 
the neural network model for the Lake Tuusulan- 
jaervi (Fig. 4). 

After neural network training with measured input 
and output data for ten years (see Fig. 10), predic- 
tions have been made using independent input data 
of the years 1973 and 1987 (see Fig. 11). After 
training the model with different numbers of output 
nodes good results have been found for predicting of 
Melosira granulata using 10 output nodes (see Fig. 
11). 

The neural network model for the River Darling 
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Fig. 13. Validation of prediction results for Ulothricales in the River Darling (Australia) by different structures of the neural network model. 
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Lake Kasumigaura: Sensitivity (%) of Microcystis aeruginosa for input changes by 10% 
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(Fig. 5) was trained using limnological time series of 
ten years (see Fig. 12). Using independent data of 
the years 1986/87 and 1990/91, the best prediction 
result was found for the filamentous green algae 
Ulothricales. After experiments with different net- 
work structures, the observed summer peak in 1987 
and the autumn peak in 1992 have been predicted 
well choosing one output node and two hidden layers 
(see Fig. 13). 

Interesting insights into internal weightings of the 
inputs in a trained neural network can be obtained by 
sensitivity analyses, The input sensitivities of algae 
predicted for the four freshwater systems are repre- 
sented in Figs. 14 and 15. The sensitivity analysis for 
the Lake Kasumigaura (Fig. 14, above) shows that 
chlorophyll-a (as a cumulative feedback factor for 
the whole algae biomass) determines most the dy- 
namics of Microcystis. It is interesting to see that 
density data of the zooplankton groups Rotifera, 
Cladocera and Copepodes have a higher weighting 
as forcing functions for Microcysfis than the nutrient 
components orthophosphate and nitrate. But the graz- 
ing of Microcystis by zooplankton is not expected to 
be intensive as they tend to form big cell colonies 
and produce toxins. Therefore, this result seems to 
reflect the indirect effect of competition advantages 
of Microcystis due to preferred grazing of non-toxic 
algae by zooplankton. 

The sensitivity analysis for Lake Biwa (Fig. 14, 
below) indicates that the diatom Melosira granulata 
is mainly driven by nutrients including silica and - -  
as expected - -  by the feed-back factor chlorophyll-a. 
The input sensitivity of the diatom Melosira granu- 
lata in Lake Tuusulanjaervi (Fig. 15, above) gives 
dissolved oxygen a high weighting although oxygen 
is not the real driving variable for algal growth. This 
result may be caused by the stronger annual dynam- 
ics of the oxygen data compared with nutrients data. 
There is no clear explanation for the low weighting 
of solar radiation at the water surface and the indica- 
tor of thermal stratification of the water body during 
summer. An interesting result provides the sensitivity 
analysis for Ulothricales in the River Darling (Fig. 
15, below). It proves the importance of flow as 
control factor for the growth of algae in rivers. 

5. Conclusions 

This work presented a study on the application of 
artificial neural networks to the task of modeling and 

prediction of algal blooms. A set of four freshwater 
systems was evaluated, three lakes and a river. The 
lakes were of different characteristics including a 
variety of nutrient levels, light and temperature con- 
ditions, depth and water retention time. The river 
presented a unique application of the approach in a 
water system with extremely short retention time. 

A neural network structure was developed for 
each system where the availability of time-series 
data dictated to some extent the neural network 
design. Results showed that the neural network ap- 
proach is a successful method of modeling such 
complex and nonlinear phenomena as algal blooms 
in freshwater systems with different environmental 
conditions. 

The validation of the neural network model using 
independent data not included in the training proce- 
dure showed good agreement for predictions of the 
occurrence of specific algae species in all four fresh- 
water systems. 

In the case of Lake Kasumigaura, the model 
validation has proven that artificial neural networks 
are able to predict timing, magnitudes and succession 
of several algal species realistically, such as Micro- 
cystis, Oscillatoria and Phormidium. 

Using the interconnection weights as a guide, a 
sensitivity analysis of the model performance under 
variations in the input data magnitudes was con- 
ducted. The results provide a means of defining the 
primary components driving the dynamics of algae 
species. Additionally, the number of output variables 
included in each of the models was varied to identify 
the variables that play a major role in algae growth. 
This concept is complementary to traditional ap- 
proaches that require a large number of system char- 
acteristics to be estimated when data is unavailable. 

In conclusion the work supports the concept that 
the neural network approach can be successful for 
modeling and prediction of very complex and non- 
linear ecological phenomena such as algal blooms. 
As a complement to traditional modelling tech- 
niques, the neural network approach was shown to 
be useful for identification of the primary driving 
mechanisms in the system dynamics. 

To improve the predictive validity of the neural 
network model current work includes: (1) the opti- 
mization of neural network training using genetic 
algorithms and modified data structures, (2) the uti- 
lization of not only time-series data but also ecologi- 
cal knowledge represented by fuzzy rules for neural 
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network training, (3) the extension of the forecast 
time scale to enable decision makers to circumvent 
an expected algal bloom. Furthermore, it is tried to 
extract knowledge from validated neural network 
models about natural control mechanism of algal 
species in specific freshwater systems. 
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