
Admin

- Hope you enjoyed Quiz 1. Quiz 2 will have more calculation questions.
- Assignments will be explained today
- Try to form your group quickly (can partner with people from other groups)
- There will be a makeup lecture and tutorial next week

Web security

• Still remember digital signature?

Web Security Considerations

- The WEB is easily accessible worldwide more vulnerability
- It's not uni-directional like emails, it involves client and server.
- May trigger to execute software.
- A Web server can be exploited as a launching pad into a corporation's entire computer complex.

Web Security Approaches: Network layer

In the future weeks, you will study **IPSec**:

- Provides a general purpose solution.
- Transparent to end users and applications.

However, today, Web **Security Approaches: Just** above TCP

- Implement Just above Transport layer
- Provides a general purpose solution.
- SSL can also be embedded in applications. (Explorer browsers are equipped with SSL.)

A question in the future: if SSL /TLS is above Transport layer, why we say IPsec is on the network layer?

Web Security Approaches: application level

Application Level:

- Security services are embedded within an application.
- Security service can be tailored for specific needs of an application.
- Example: Secure Electronic Transaction (SET). Your project!

Secure Socket Layer (SSL)

- Serving three security goals
 - 1. Entity Authentication.
 - 2. Confidentiality.
 - 3. Message integrity.
- Provides secure key exchange between a browser (client) and server.
- Provides security parameters negotiation.

SSL Architecture

- SSL runs on the top of TCP to provide reliable and secure end-to-end service
- The question is: is SSL responsible for rearrange the packets if they arrive in different order?
- Consists of two layers (shown in next Slide).

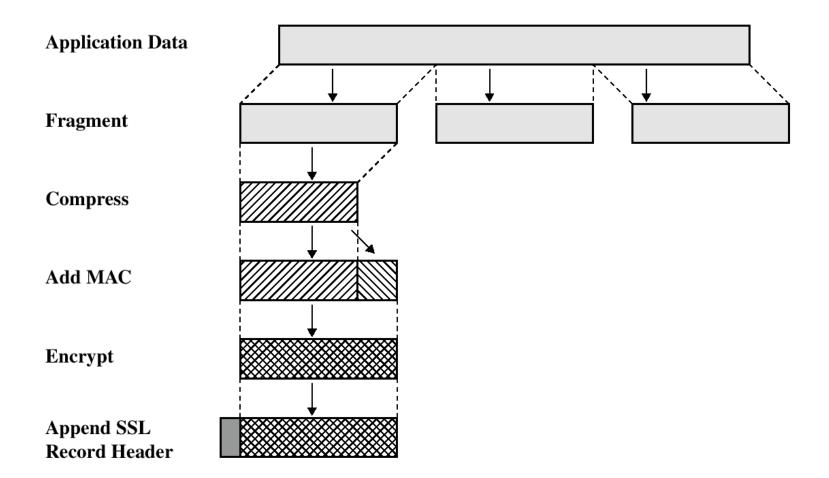
SSL Architecture

SSL Handshake Protocol	SSL Change Cipher Spec Protocol	SSL Alert Protocol	НТТР
SSL Record Protocol			
ТСР			
IP			

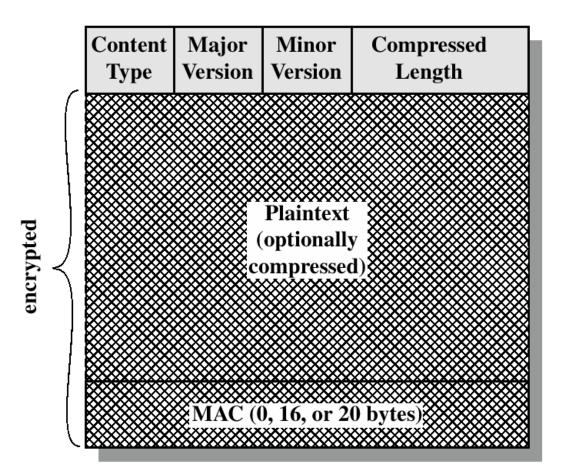
SSL Record Protocol

- Provides two services for SSL connections:
- 1. Confidentiality:

A shared secret key used for conventional encryption of SSL payload.


2. Message Integrity:

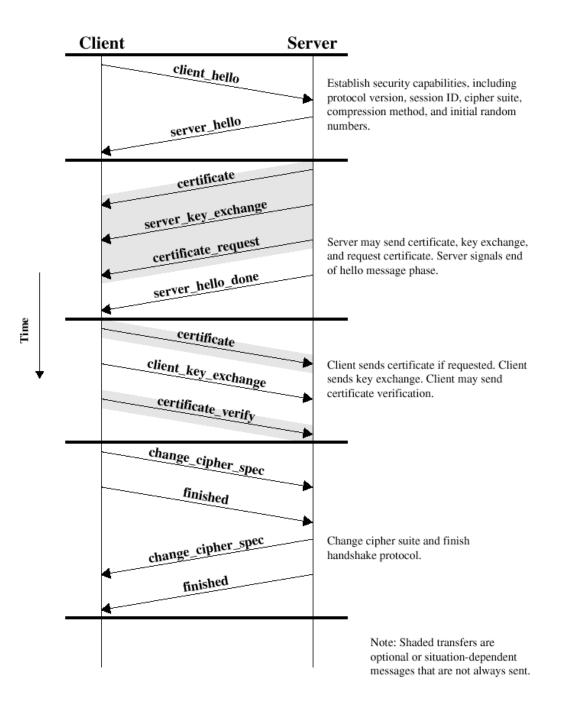
A shared secret key is used to construct a message authentication code (MAC)


SSL Record Protocol...

- Record protocol takes an application message and performs the following operations:
- Fragmentation
- Compression
- Add a MAC (a shared secret key is used)
- Encryption (symmetric encryption)
- Appends an SSL record header.

SSL Record Protocol Operation

SSL Record Format



SSL Record Header

- Content Type (8): Used by higher layers to process the enclosed fragment.
- Major Version (8): Indicates the major version of SSL used.
- Minor Version (8): Indicates the minor version of SSL used.
- Compressed length (16): The length of fragment in bytes.

Handshake Protocol

- The most complex part of SSL.
- Allows the server and client to
 - authenticate each other.
 - negotiate encryption, MAC algorithm and cryptographic keys.
- Used before any application data are transmitted.

1. Hello and Negotiate Parameters

• Client sends server a plaintext message to suggest some parameters for conversation:

```
Version:
SSL 3.1 if you can, else SSL 3.0
Key Exchange:
RSA if you can, else Diffie-Hellman
Secret Key Cipher Method:
TripleDES if you can, else DES
Message Digest:
MD5 if you can, else SHA-1
Random #: 777,666,555
```

1. Hello and Negotiate Parameters...

• Server responds by its choice of parameters in a plaintext message:

```
Version:
SSL 3.1
Key Exchange:
RSA
Secret Key Cipher Method:
TripleDES
Message Digest:
SHA-1
Random #: 444,333,222
```

Change Cipher Spec protocol

- consists of a single message to tell other party in the SSL/TLS session, who is also known is the peer, that the sender wants to change to a new set of keys.
- The key is computed from the information exchanged by the Handshake sub-protocol.

1. Hello and Negotiate Parameters...

• After responding to the hello message, the server sends the client its digital certificate.

You should all know by now what client does with this certificate.

A trusted CA signed this certificate.

 The client uses the trusted CA's public key to decrypt the certificate and obtains server's public key and verifies the server.

2. Key Agreement and Exchange

- The client generates a 48-byte random value (called pre-master secret), encrypts it with server's public RSA key, and sends it to server.
- The server decrypts this message and generates keys used for cryptographic purpose

2. Key Agreement and Exchange...

Generation of six shared secret keys:

- Random values exchanged.
- Pre-master secret.
- Pseudo-random function generator.

Example:

PRF(pre-master secret, random1+ random2)

Computed repeatedly.

3. Authentication

The client authenticates the server:

- The clients sends the server a message that is encrypted with the generated secret keys.
 called the "finished handshake" message
- The server responds with its own encrypted finished handshake message.

The clients is now convinced that it is communicating with right server.

pre-master secret could only be decrypted with the server's private key.

4. Confidentiality and Integrity

- Client and server use the generated secret keys for confidential data transfer.
- * The client uses its secret key to generate a HMAC for the message.
- The client encrypts message data + HMAC with its secret key and sends it to server.
- The server decrypts the received message with its secret key.
- The server checks the integrity of the message using HMAC.

- The same record format as the SSL record format.
- Defined in RFC 2246.
- Similar to SSLv3.
- Differences:
 - version number
 - For current version of TLS, the major version is 3 and minor version is 1.
 - message authentication code
 - TLS differs in actual algorithm and scope of the MAC calculation.

* TLS uses HMAC algorithm. (difference is how padding bits are used.)

- TLS also covers the field "TLSCompressed.version" field in MAC calculation.
- pseudorandom function
- TLS makes use of a different function.
- (objective is to expand secret into blocks of data for purpose of key generation.)

- alert codes
- TLS does not support "no_certificate".
- In addition, TLS supports some additional alerts.
- cipher suites
- TLS does not support "Fortezza" method of key exchange.
- TLS does not support "Fortezza" method of encryption.

- client certificate types
- TLS does not support "Fortezza".
- certificate_verify and finished message
- In TLS, for certificate_cerify message,
 MD5 and SHA-1 hashes are calculated only over handshake_messages.
- (In SSL, hash calculation also includes the master secret and pads.)

- For finished_message, the calculation of hash is based on a different function.
- cryptographic computations
- Master secret computation in TLS uses different computation.

(uses the same parameters as in SSL) Padding

Can be of any size (<=255 bytes) so that the total length is a multiple of cipher's block length.

Secure Electronic Transactions

• Put all your studies in action!

- An open encryption and security specification.
- Designed to protect credit card transaction on the Internet.
- Companies involved:
 - MasterCard, Visa, IBM, Microsoft, Netscape, RSA, Terisa and Verisign
- Not a payment system.
- Set of security protocols and formats

(enables users to employ existing Credit card (CC) payment infrastructure securely in an open environment).

SET Services

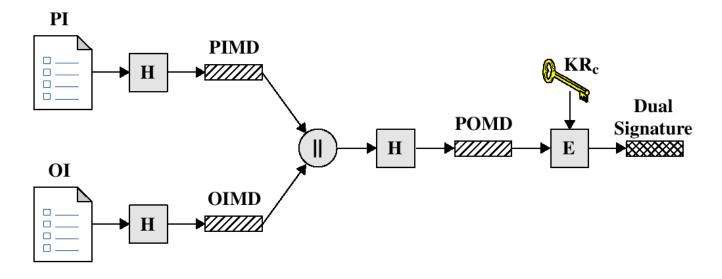
- Provides three services:
- 1. Provides a secure communication channel among all parties involved in a transaction.
- 2. Provides trust by the use of X.509v3 digital certificates.
- 3. Ensures privacy: information is only available to involved parties.

SET Overview

- Key Features of SET:
 - -Confidentiality of information
 - -Integrity of data
 - -Cardholder account authentication
 - Merchant authentication

The settings...

- The customer has a certificate. (obviously contains customer's public key)
- Merchants have their own certificates. (Two certificates: one for signing messages and the other for key exchange.)
- The order and payment are sent together. Payment information is encrypted in such a way that it can not be read by the merchant.


- Objective: to link two messages that are intended for two different recipients.
- Customer wants to send:
- 1. Order Information (OI) to merchant.
- 2. Payment information (PI) to bank.
- Customer wants to link these two items and also wants to keep them separate.

Generation of Dual Sign.

- Customer takes the hash (SHA-1) of PI.
- Customer takes the hash of OI.
- Concatenates these two and takes hash of the result.
- Customer signs the final hash with his private key.

DS = EKRc[H(H(PI)||H(OI))]

$$DS = E_{KR_c}[H(H(PI) \parallel H(OI))]$$

- PI = Payment Information OI = Order Information H = Hash function (SHA-1) || = Concatenation
- PIMD = PI message digest
- OIMD = OI message digest

Е

- POMD = Payment Order message digest
 - = Encryption (RSA)
 - KR_c = Customer's private signature key

- Merchant has DS, OI, and PIMD.
- Merchant computers H(PIMD||H(OI)).
- Merchant decrypts DS using customer's public key.
- If both these items are equal, the merchant has verified the DS.

PI is not send to the Merchant

- The bank has DS, PI, and OIMD.
- The bank computers H(H(PI)||OIMD).
- The bank decrypts DS using customer's public key.
- If both these items are equal, the merchant has verified the DS.
 - OI is NOT send to the bank