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In 1974 Bahl, Cocke, Jelinek and Raviv published the decoding algorithm based on a 
posteriori probabilities later on known as the BCJR, Maximum a Posteriori (MAP) or 
forward-backward algorithm. The procedure can be applied to block or convolutional codes 
but, as it is more complex than the Viterbi algorithm, during about 20 years it was not used in 
practical implementations. The situation was dramatically changed with the advent of turbo 
codes in 1993. Their inventors, Berrou, Glavieux and Thithimajshima, used a modified 
version of the BCJR algorithm, which has reborn vigorously that way. 

There are several simplified versions of the MAP algorithm, namely the log-MAP and the 
max-log-MAP algorithms. The purpose of this tutorial text is to clearly show, without 
intermediate calculations, how all these algorithms work and are applied to turbo decoding. 
A complete worked out example is presented to illustrate the procedures. Theoretical details 
can be found in the Appendix. 

1 The purpose of the BCJR algorithm 
Let us consider a block or convolutional encoder described by a trellis, and a sequence 

Nxxx …21=x  of N n-bit codewords or symbols at its output, where xk is the symbol generated by the 
encoder at time k. The corresponding information or message input bit, uk, can take on the values -1 or +1 
with an a priori probability P(uk), from which we can define the so-called log-likelihood ratio (LLR) 
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This log-likelihood ratio is zero with equally likely input bits. 

Suppose the coded sequence x is transmitted over a memoryless additive white gaussian noise 
(AWGN) channel and received as the sequence of nN real numbers Nyyy …21=y , as shown in Fig. 1. 
This sequence is delivered to the decoder and used by the BCJR [1], or any other, algorithm in order to 
estimate the original bit sequence uk. for which the algorithm computes the a posteriori log-likelihood ratio 

)( ykuL , a real number defined by the ratio 
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The numerator and denominator of Eq. (2) contain a posteriori conditional probabilities, that is, 
probabilities computed after we know y. The positive or negative sign of )( ykuL  is an indication of which 
bit, +1 or -1, was coded at time k. Its magnitude is a measure of the confidence we have in the preceding 
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decision: the more the )( ykuL  magnitude is far away from the zero threshold decision the more we trust in 

the bit estimation we have made. This soft information provided by )( ykuL  can then be transferred to 
another decoding block, if there is one, or simply converted into a bit value through a hard decision: as it 
was said before, if 0( <)uL k y  the decoder will estimate bit uk = -1 was sent. Likewise, it will estimate 

uk = +1 if 0( >)uL k y . 

 

Encoder AWGN Channel Decoder 
u x y ^ u 

 

Fig. 1 A simplified block diagram of the system under consideration 

It is convenient to work with trellises. Let us admit we have a rate 1/2, n = 2, convolutional code, 
with M = 4 states S = {0, 1, 2, 3} and a trellis section like the one presented in Fig. 2. Here a dashed line 
means that branch was generated by a +1 message bit and a solid line means the opposite. Each branch is 
labeled with the associated two bit codeword xk, where, for simplicity, 0 and 1 correspond to -1 and +1, 
respectively. 
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Fig. 2 The convolutional code trellis used in the example 

Let us suppose we are at time k. The corresponding state is sSk = , the previous state is sSk ′=−1  
and the decoder received symbol is yk. Before this time k-1 symbols have already been received and after it 
N-k symbols will be received. That is, the complete sequence y can be divided into three subsequences, one 
representing the past, another the present and another one the future: 
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In the Appendix it is shown that the a posteriori LLR )( ykuL  is given by the expression 
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),,( yssP ′  represents the joint probability of receiving the N-bit sequence y and being in state s′  at time 
k-1 and in state s at the current time k. In the numerator R1 means the summation is computed over all the 
state transitions from s′ to s that are due to message bits uk = +1 (i. e. , dashed branches). Likewise, in the 
denominator R0 is the set of all branches originated by message bits uk = -1. The variables α, γ and β 
represent probabilities to be defined later. 

2 The joint probability ),,( yssP ′  

This probability can be computed as the product of three other probabilities, 

 )(),()(),,( 1 ssssssP kkk βγα ′′=′ −y , (5) 

They are defined as: 

 ),()(1 kk sPs <− ′=′ yα  (6)  

 ( )ssPss kk ′=′ ,),( yγ  (7) 

 )()( sPs kk >= yβ  (8) 

At time k the probabilities α, γ and β are associated with the past, the present and the future of 
sequence y, respectively. Let us see how to compute them by starting with γ. 

2.1 Calculation of γ 

The probability ( )ssPss kk ′=′ ,),( yγ  is the conditional probability that the received symbol is yk at 
time k and the current state is Sk = s, knowing that the state from which the connecting branch came was 

sSk ′=−1 . It turns out that γ is given by 

)()(),( kkkk uPxPss y=′γ  

 In the special case of an AWGN channel the previous expression becomes 
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where Ck is a quantity that will cancel out when we compute the conditional LLR )( ykuL , as it appears 
both in the numerator and the denominator of Eq. (4), and Lc, the channel reliability measure, or value, is 
equal to 
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N0/2 is the noise bilateral power spectral density, a is the fading amplitude (for nonfading channels it is 
a = 1), Ec and Eb are the transmitted energy per coded bit and message bit, respectively, and Rc is the code 
rate. 

2.2 Recursive calculation of α and β 

The probabilities α and β can (and should) be computed recursively. The respective recursive 
formulas are1: 
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Please note that: 

• In both cases we need the same quantity, ),( ssk ′γ . It will have to be computed first. 

• In the )(skα  case the summation is over all previous states sSk ′=−1  linked to state s by converging 
branches, while in the )(1 sk ′−β  case the summation is over all next states sSk =  reached with the 
branches stemming from s′ . Theses summations contain only two elements with binary codes. 

• The probability α is being computed as the sequence y is received. That is, when computing α we go 
forward from the beginning to the end of the trellis. 

• The probability β can only be computed after we have received the whole sequence y. That is, when 
computing β we come backward from the end to the beginning of the trellis. 

• We will see that α and β are associated with the encoder states and that γ is associated with the 
branches or transitions between states. 

• The initial values )(0 sα  and )(sNβ mean the trellis is terminated, that is, begins and ends in the 
all-zero state. Therefore it will be necessary to add some tail bits to the message in order that the 
trellis path is forced to return back to the initial state. 

It is self-evident now why the BCJR algorithm is also known as the “forward-backward algorithm”. 

3 Combatting numerical instability 
Numerical problems associated with the BCJR algorithm are well known. In fact, the iterative 

nature of some computations may lead to undesired overflow or underflow situations. To circumvent them 
normalization countermeasures should be taken. Therefore, instead of using α and β directly from recursive 
equations (10) and (11) into Eq. (5) those probabilities should previously be normalized by the sum of all α 
and β at each time, respectively. The same applies to the joint probability P(s’, s, y), as follows. Define the 
auxiliary unnormalized variables α’ and β’ at each time step k: 

∑
′

− ′′=′
s

kkk ssss ),()()( 1 γαα  

                                                 
1 These recursive equations are prone to numerical instability. We will see soon how to overcome it. 
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After all M values of α’ and β’ have been computed sum them all: ∑ ′
s

k s)(α  and ∑
′

− ′′
s

k s )(1β . 

Then normalize α and β dividing them by these summations: 
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Likewise, after all 2M products )(),()(1 ssss kkk βγα ′′−  over all the trellis branches have been 
computed at time k their sum 
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will normalize P(s’,s,y): 

Pk
norm

ssPssP
Σ
′

=′ ),,(),,( yy  

This way we guarantee all α, β and Pnorm(s’,s’y) always sum to 1 at each time step k. None of these 
normalization summations affect the final log-likelihood ratio L(uk|y) as all them appear both in its 
numerator and denominator: 
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4 Trellis-aided calculation of α and β 

Fig. 3 shows the trellis of Fig. 2 but now with new labels. We recall that in our convention a dashed 
line results from a +1 input bit while a solid line results from a -1 input bit. 

Let us do the following as computations are made: 

• Label each trellis branch with the value of ),( ssk ′γ  computed according to Eq. (9). 

• In each state node write the value of )(skα  computed according to Eqs. (10) or (12) from the initial 
conditions α0 (s). 
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• In each state node and below )(skα  write the value of βk (s) computed according to Eqs. (11) or (13) 
from the initial conditions βN (s). 
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Fig. 3 α, β and γ as trellis labels  

4.1 Calculation of α 

Let us suppose then that we know )(1 sk ′−α . The probability )(skα ′  (without normalization) is 
obtained by summing the products of )(1 sk ′−α  and ),( ssk ′γ  associated with the branches that converge 
into s. For example, we see in Fig. 3 that at time k two branches arrive at state Sk = 2, one coming from 
state 0 and the other one coming from state 1, as Fig. 4a shows. After all M )(skα ′  have been computed as 
explained they shoud be divided by their sum. 
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a)      b) 

Fig. 4 Trellis-aided recursive computation of α and β. Expressions are not normalized. 

The procedure is repeated until we reach the end of the received sequence and have computed 
)0(Nα  (remember our trellis terminates at the all-zero state). 
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4.2 Calculation of β 

The quantity β can be calculated recursively only after the complete sequence y has been received. 
Knowing )(skβ  the value of )(1 sk ′−β  is computed in a similar fashion as )(skα  was: we look for the 
branches that leave state sSk ′=−1 , sum the corresponding products )(skγ )(skβ  and divide by the sum 

∑
′

− ′′
s

k s )(1β . For example, in Fig. 3 we see that two branches leave the state 11 =−kS , one directed to state 

0=kS  and the other directed to state 2=kS , as Fig. 4b shows. The procedure is repeated until the 
calculation of )0(0β . 

4.3 Calculation of ),,( yssP ′  and )uL k y(  

With all the values of α, β and γ available we are ready to compute the joint probability 
Pkkkknorm ssssssP Σ′′=′ − )(),()(),,( 1 βγαy . For instance, what is the value of unnormalized P(1,2,y)? As 

Fig. 5 shows, it is )2()2,1()1(1 kkk βγα − . 

We are left just with the a posteriori LLR )uL k y( . Well, let us observe the trellis of Fig. 3 again: 
we notice that a message bit +1 causes the following state transitions: 0→2, 1→2, 2→3 e 3→3. These are 
the R1 transitions of Eq. (4). The remaining four state transitions, represented by a solid line, are caused, of 
course, by an input bit -1. These are the R0 transitions. Therefore, the first four transitions are associated 
with the numerator of Eq. (4) and the remaining ones with the denominator: 
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Fig. 5 The unnormalized probability P(s’,s,y) as the three-factor product αγβ 
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A summary of the unnormalized expressions needed to compute the conditional LLR is presented in 
Fig. 6. 
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Fig. 6 Summary of expressions used in the BCJR algorithm 

5 Simplified versions of the MAP algorithm 
The BCJR, or MAP, algorithm suffers from an important disadvantage: it needs to perform many 

multiplications. In order to reduce this computational complexity several simplifying versions have been 
proposed, namely the Soft-Output Viterbi Algorithm (SOVA) in 1989 [2], the max-log-MAP algorithm in 
1990-1994 [3] [4] and the log-MAP algorithm in 1995 [5]. In this text we will only address the log-MAP 
and the max-log-MAP algorithms. Both substitute additions for multiplications. Three new variables, A, B e 
Γ, are defined: 
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The values of the function )1ln( bae −−+  are usually stored in a look-up table with just eight values of 
ba −  between 0 and 5 (it is enough, actually!). 

The element lnCk in the expression of ),( ssk ′Γ  will not be used in the L(uk|y) computation. The 
LLR is given by the final expression 

 [ ] [ ])(),()(*max)(),()(*max)( 11
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A summary of the expressions needed to compute Eq. (16) is presented in Fig. 7.  

Eq. (16) is not computed immediately in the log-MAP algorithm. In fact, the function max* on that 
equation has more than the two variables present in Eq. (15). Fortunately it can be computed recursively, as 
shown in the Appendix. 

The log-MAP algorithm uses exact formulas so its performance equals that of the BCJR algorithm 
although it is simpler, which means it is preferred in implementations. In turn, the max-log-MAP algorithm 
uses approximations, therefore its performance is slightly worse. 
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Fig. 7 Summary of expressions used in the simplified MAP algorithms 

6 Application of the BCJR algorithm in iterative decoding 
Let us consider a rate 1/n systematic convolutional encoder in which the first coded bit, xk1, is equal 

to the information bit uk. In that case the a posteriori log-likelihood ratio ( )kL u y  can be decomposed into 
a sum of three elements (see the Appendix for details): 

 )()()( 1 kekckk uLyLuLuL ++=y . (17) 
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The first two terms in the right hand side are related with the information bit uk. On the contrary, the 
third term, Le(uk), depends only on the codeword parity bits. That is why Le(uk) is called extrinsic 
information. This extrinsic information is an estimate of the a priori LLR L(uk). How? It is easy: we provide 
L(uk) and Lcyk1 as inputs to a MAP (or other) decoder and in turn we get ( )kL u y  at its output. Then, by 
subtraction, we get the estimate of L(uk): 

 1)()()( kckkke yLuLuLuL −−= y  (18) 

This estimate of L(uk) is presumably a more accurate value of the unknown a priori LLR so it should 
replace the former value of L(uk). If we repeat the previous procedure in an iterative way providing Lcyk1 
(again) and the new L(uk) = Le(uk) as inputs to another decoder we expect to get a more accurate ( )kL u y  
at its output. This fact is explored in turbo decoding, our next subject. 

The turbo code inventors [6] worked with two parallel concatenated2 and interleaved rate 1/2 
recursive systematic convolutional codes decoded iteratively with two MAP decoders (see Figs. 8 and 9, 
where P and P-1 stand for interleaver and deinterleaver, respectively. P is also a row vector containing the 
permutation pattern). Both encoders in Fig. 8 are equal and their output parity bits )1(

kpx  and )2(
kpx  are often 

collected alternately through puncturing in order that an overall rate 1/2 code is obtained. The i-th element 
of the interleaved sequence, ( )P

iu , is merely equal to the Pi-th element of the original sequence, ( )
i

P
Piu u= . 
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Fig. 8 The turbo encoder 

Eq. (17) is the basis for iterative decoding. In the first iteration the a priori LLR L(uk) is zero if we 
consider equally likely input bits. The extrinsic information Le(uk) that each decoder delivers will be used to 
update L(uk) from iteration to iteration and from that decoder to the other. This way the turbo decoder 
progressively gains more confidence on the ±1 hard decisions the decision device will have to make in the 
end of the iterative process. Fig. 9 shows a simplified turbo decoder block diagram that helps illuminate the 
iterative procedures. We have just seen how to get an interleaved sequence u(P) from u (we compute 

( )
i

P
Pi =u u ). To deinterleave the arbitrary sequence w we simply compute 

1( )
i

P
iP

−

=w w  (see the numerical 

example in Section 7.4). 

                                                 
2 Serial concatenation is used as well, although not so often. 
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Fig. 9 A simplified block diagram of a turbo decoder 

The iterative decoding proceeds as follows: 

• in the first iteration we arbitrarily assume L(uk) = 0, then decoder 1 outputs the extrinsic information 
Le1(uk|y) on the systematic, or message, bit it gathered from the first parity bit (so note that actually 
decoder 2 does not need the LLR L1(uk|y)!); 

• After appropriate interleaving the extrinsic information Le1(uk|y) from decoder 1, computed from 
Eq. (18), is delivered to decoder 2 as L1(uk), a new, more educated guess on L(uk). Then decoder 2 
outputs Le2(uk|y), its own extrinsic information on the systematic bit based on the other parity bit (note 
again we keep on “disdaining” the LLR!). After suitable deinterleaving, this information is delivered 
to decoder 1 as L2(uk), a newer, even more educated guess on L(uk). A new iteration will then begin. 

• After a prescribed number of iterations or when a stop criterium is reached the log-likelihood L2(uk|y) 
at the output of decoder 2 is deinterleaved and delivered as L(uk|y) to the hard decision device, which 
in turn estimates the information bit based only on the sign of the deinterleaved LLR, 

{ }1
2ˆ ( ) ( )k k ku sign L u sign P L u−= ⎡ ⎤ = ⎡ ⎤⎣ ⎦ ⎣ ⎦y y . 

In iterative decoding we can use any simplifying algorithm instead of the BCJR algorithm. 

7 Numerical examples 

In the next examples of the BCJR algorithm and its simplifications we are going to use the same 
convolutional encoder we have used up until now. Suppose that upon the transmission of a sequence x of 
six coded symbols over an AWGN channel the following sequence of twelve real numbers is received in 
the decoder. 

����
����
����
����
����
����
 654321

4.05.17.01.03.05.05.08.02.05.01.03.0
yyyyyy

−−−−=y  

The encoder input bits, uk = ±1, are equally likely and the trellis path associated with the coded 
sequence x begins and ends in the all-zero state, for which two tail bits have to be added to the message. 

The AWGN channel is such that 
0

1cE
dB

N
=  and a = 1. We know in advance the last two message (tail) 

bits. What is the MAP, log-MAP and max-log-MAP estimation of the other four? 
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7.1 Example with the BCJR algorithm 

The channel reliability measure is 0,1

0
4 4 1 10 5.0c

c
E

L a
N

= = × × = . Since P(uk = ±1) = 1/2 then 

0)( =kuL  so 12/)( =kk uLue  (cf. Eq. (9)), independently of the sign of uk. In the same Eq. (9) we will 
consider Ck = 1 (why not? any value is good… but, attention! this way the “probabilities” γk(s’,s) we are 
going to compute actually may be higher than one! But, as what we want to compute is a ratio of 
probabilities, the final result will be the same3). 

At time k = 1 we have the situation depicted in Fig. 10a. Thus, the values of γ are 

( ) ( )[ ] 37.0
2

exp)0,0( 11.013.015.2
12121111

2)(
1 ===⎥

⎦

⎤
⎢
⎣

⎡
+= −×−×−× eeyxyx

L
eC cuLu

k
kkγ  

( )[ ] 74.2)2,0( 1.013.015.2
1 === ×+×× eeγ  

 

(+1,+1) 

(-1,-1) 

0.3   0.1 Received 
sequence k =1 k =0 

a) 
 

 

γ1(0,2)=2.74

γ1(0,0)=0.37 
k =1 k =0

α0(0)=1 α1(0)=0.12 

α1(2)=0.88 

b) 
 

Fig. 10 Symbols received and sent at time k = 1 and associated probabilities α and γ. 

and, therefore (see Fig. 10b), 

37.037.01)0,0()0( 10 =×=γα  ⇒ 12.0
74.237.0

37.0)0(1 =
+

=α  

74.274.21)2,0()0( 10 =×=γα . ⇒ 88.0
74.237.0

74.2)2(1 =
+

=α  

The calculation of α and γ will progress in an identical way as the sequence is being received4. 
When it reaches the end it is the time to compute β backwards to the trellis beginning. The final situation 
with all the values of α, β and γ is portrayed in Fig. 11. Let us see a final example of how to compute α, β 
and γ at time k = 3: 

( )[ ] 47.0)3,2( 75.05.01)8.0(15.2
3 === −×+×−× eeγ  

45.0
31.4

13.292.047.001.0
31.4

)3,3()3()3,2()2(
)3( 3232

3 =
×+×

=
+

=
γαγα

α  

15.0
96.9

47.0001.013.269.0
96.9

)3,2()3()1,2()1(
)2( 3333

2 =
×+×

=
+

=
γβγβ

β  

                                                 
3 However, care must be taken if overflow or underflow problems might occur. In that case it would be wiser to use the 
actual values of Ck. 
4 There are at most 2n = 4 different values of γ at each time k since there are at most 2n = 4 different codewords. 
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1
 

1.0 
1.0 

0.12 
0.56 

0.04
0.15

0.17
0.25

0.05
0.02

0.50 
0.00 

0.88 
0.44 

0.03
0.67

0.01
0.15

0.92
0.03

0.10
0.69

0.27
0.06

0.45
0.00

0.56
0.00

0.37 2.13 0.04 1.65 4.53 

2.74 

0.47 

0.17 

5.83 

26.40 
0.04 

2.13 

0.47 

2.13 

0.60 

0.13 

7.49 

)(
)(

s
s

k

k

β
α ),( ssk ′γ

0.06 

0.60 

26.40 0.22 15.95 

0.13 

7.49 0.47 

0.13 

1.0 
1.0 

0.50 
1.00 

0.04
0.98

7.49 

1.65 

0.34
0.02

 

Fig. 11 Values of α, β and γ after all the six received symbols have been processed. 

The values in the denominators came from the summations 

31.4959.1182.1452.0716.0)3()2()1()0()( 33333 =+++=′+′+′+′=′∑ ααααα
s

s  

96.9327.0469.1689.6476.1)3()2()1()0()( 22222 =+++=′+′+′+′=′′∑
′

βββββ
s

s  

and the calculation of )3,2(3γ  took into account that the branch in question is associated with the symbol 
x3 = (-1,+1). 

The several probabilities ),,( yssP ′  are easily computed with the help of Figs. 5 or 6. Their 
normalized values are presented in Fig. 13. For instance (see Fig. 12), at time k = 3 
Pnorm(2,3,y) = P(2,3,y)/ΣP3 is equal to 5(2,3, ) (0.01 0.47 0.001) / 0.56 1.1.10normP −≈ × × ≈y , as it turns out 
that the sum of all eight branch products αγβ is 

 

γ3(2,3)=0.47 

k =3k =2

α2(2)=0.01 

β3(3)=0.001 

 

Fig. 12 Values used in the calculation of unnormalized P(2,3,y) 
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56.0068.0493.0)(),()()(),()(

)(),()(

1

1

332332

,
3323

≈+=′′+′′=

=′′=Σ

∑∑

∑

RR

RR
P

ssssssss

ssss

o

o

βγαβγα

βγα

 

The values of ΣPk, ∑ ′
10 or  

,,(
RR

)ssP y  and ∑ ′
10 or  

,,(
RR

norm )ssP y  are to be found at Table 1. 

Table 1 – Values of ΣPk, ΣP(s’,s,y) and ΣPnorm(s’,s,y) 

 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 
Unnormalized       

∑ ′
1

,,(
R

)ssP y  1.214 0.177 0.068 0.306 0.000 0.000 

∑ ′
0

,,(
R

)ssP y  0.203 0.139 0.493 0.001 0.379 8.084 

ΣPk 1.417 0.316 0.562 0.307 0.379 8.084 
Normalized ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

∑ ′
1

,,(
R

norm )ssP y  0.857 0.560 0.122 0.996 0.000 0.000 

∑ ′
0

,,(
R

norm )ssP y  0.143 0.440 0.878 0.004 1.000 1.000 

We are on the brink of getting the wanted values of )( ykuL  given by Eq. (14): we collect the 
values of the last two rows of Table 1 and obtain 

79.1
143.0
857.0ln

00
),2,0(

ln)( 1 ===
),,(P

P
uL

norm

norm

y
y

y  

24.0
440.0
560.0ln

1,200
),3,2(),2,0(

ln)( 2 ==
+
+

=
),(P),,(P

PP
uL

normnorm

normnorm

yy
yy

y  

98.1
878.0
122.0ln

),1,3(1,2),0,1(00
),3,3(),3,2(),2,1(),2,0(

ln)( 3 −==
+++
+++

=
yyyy
yyyy

y
normnormnormnorm

normnormnormnorm

P),(PP),,(P
PPPP

uL  

56.5
004.0
996.0ln

),1,3(1,2),0,1(00
),3,3(),3,2(),2,1(),2,0(

ln)( 4 ==
+++
+++

=
yyyy
yyyy

y
normnormnormnorm

normnormnormnorm

P),(PP),,(P
PPPP

uL  

−∞=
+++

=
),1,3(1,2),0,1(00

0ln)( 5 yyyy
y

P),P(P),,P(
uL  

−∞=
+

=
),0,1(00

0ln)( 6 yy
y

P),,P(
uL  

The last two LLR values result from the enforced trellis termination. In face of all the values 
obtained the decoder hard decision about the message sequence will be 111111ˆ −−+−++=u  or, 
with {0,1} values, 

1  1  0  1  0  0. 

The path estimated by the BCJR algorithm is enhanced in Fig. 13. 
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),,( yssPnorm ′  

0.143 0.118 0.001 0.002 0.003 0.004 

0.857 

0.026 0.117 

0.321 

0.322 0.000 0.001 0.996 

0.000 0.555 
0.322 

0.026 0.000
0.876 

0.534 0.000 0.117 0.530 0.001
0.120 

0.005 0.003 

0.3 0.1 -0.5 0.2 0.8 0.5 -0.5 0.3 0.1 -0.7 1.5 -0.4 Received 
sequence 

L(uk|y) 1.79 0.24 -1.98 5.56 -∞ -∞ 

 uk ^ +1 +1 -1 +1 -1 -1 

 

Fig. 13 Values of ),,( yssPnorm ′ and L(uk|y), and estimate of uk. 

7.2 Example with the max-log-MAP algorithm 

The values of A, B and Γ shown in Fig. 14 were obtained following the procedures previously 
described. Just to exemplify let us see how A4(1) and B3(2) in that figure were computed: 

[ ]
54.5)01.252.3,01.201.2max(

)1,3()3(),1,2()2(max)1( 43434

=+−=
=Γ+Γ+= AAA

 

[ ]
77.2)01.276.0,01.228.4max(

)3,2()3(),1,2()1(max)2( 44443

=+−−=
=Γ+Γ+= BBB

 

The sums )(),()(1 sBsssA kkk +′Γ+′−  are computed according to Fig. 7. Now we just have to find 
the maximum value of those sums at each time k and for each set R0 and R1. Subtracting the first value from 
the second we get the log-likelihood ratios of Table 2 and the corresponding uk estimate. 

Table 2 – Values obtained with the max-log-MAP algorithm 

 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 
)(max

1R
 7.302 7.302 5.791 7.302 -∞ -∞ 

)(max
0R

 5.791 6.798 7.302 1.762 7.302 7.302 

L(uk|y) 1.511 0.504 -1.511 5.539 -∞ -∞ 
uk estimate +1 +1 -1 +1 -1 -1 
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-1.01 
6.80 0.76 

)(
)(

sB
sA

k

k ),( ssk ′Γ

-1.01 -3.27 0.50 1.51 -2.77 

1.01 

-0.76 

3.27 

-0.50 3.27 -0.50 -1.51 2.77 

-3.27 0.50 

-1.76 0.76 -2.01 2.01 

1.76 -0.76 2.01 -0.76 

2.01 -2.01 

0.76 -2.01 

-0.25
6.04

2.52
4.28

3.02
-1.26

4.53 
-2.77 

7.30 
0 

-0.76
7.55

2.01
5.29

5.54
-4.28

4.53
2.77

1.01 
6.29 

-1.76
6.04

3.02
2.77

2.52
4.78

2.77
4.53

3.52
-1.26

5.04
0.76

 

Fig. 14 Values of A, B and Γ after all the six received symbols have been processed. 

Fig. 15 highlights the trellis branches that correspond to the maximum values in each set. The only 
uninterrupted path is the one corresponding to the estimated information bits. 

 
5.79 1.76 

7.30 6.80 

7.30 

5.79 

7.30 

7.30 7.30 

7.30 

 

Fig. 15 The max-log-MAP algorithm: maximum values of “A + Γ + B” in each set R0 and R1.  

7.3 Example with the log-MAP algorithm 

In this case A and B are computed without any approximations. Table 3 is calculated from them and 
from Γ (which is equal in both simplified methods). As it should be expected, we have got the same values 
for L(uk|y) as we had before with the BCJR algorithm. 
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Table 3 – Values obtained with the log-MAP algorithm 

 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 
)(max

1R
 7.783 7.311 5.791 7.349 -∞ -∞ 

)(max
0R

 5.996 6.805 7.303 1.765 7.805 7.934 

L(uk|y) 1.79 0.24 -1.98 5.56 -∞ -∞ 
uk estimate +1 +1 -1 +1 -1 -1 

7.4 Example of turbo decoding 

Now let us consider the following conditions: 

• An all-zero 9-bit message sequence is applied to two equal recursive systematic convolutional 
encoders, each with generator matrix G(x) = [1 (1+x2)/(1+x+x2)]. The output sequence is obtained 
through puncturing so the turbo encoder’s code rate is 1/2. The RSC encoder trellis is shown in 
Fig. 16. 

• The interleaver pattern is P = [1 4 7 2 5 9 3 6 8]. Thus, for example, the third element of the 
interleaved version of arbitrary sequence m = [2 4 3 1 8 5 9 6 0] is 

3

( )
73 9P

P= = =m m m . Therefore, 
m(P) = [2 1 9 4 8 0 3 5 6]. 

• The AWGN channel is such that Ec/N0 = 0.25 and a = 1. So, Lc = 1. 

• The 18-element received sequence is 

y = 0.3 -4.0 -1.9 -2.0 -2.4 -1.3 1.2 -1.1 0.7 -2.0 -1.0 -2.1 -0.2 -1.4 -0.3 -0.1 -1.1 0.3. 

• The initial a priori log-likelihood ratio is assumed to be L(uk) = 0. 

 
Current 
state 

Previous 
state 

Output xk 

0 

1 

2 

3 
01 

11 

10 

00 

01 

10 

11 

00 0 

1 

2 

3 

 

Fig. 16 The trellis of the RSC encoder characterized by G(x) = [1 (1+x2)/(1+x+x2)] 

Therefore, we will have the following input sequences in the turbo decoder of Fig. 9: 

k 1 2 3 4 5 6 7 8 9 
1c kL y  0.3 -1.9 -2.4 1.2 0.7 -1.0 -0.2 -0.3 -1.1 

( )
1
P

c kL y  0.3  1.2   -0.2 -1.9 0.7 -1.1 -2.4 -1.0 -0.3 
(1)

c kpL y  -4.0 0 -1.3 0 -2.0 0 -1.4 0 0.3 
(2)

c kpL y  0 -2.0 0 -1.1 0 -2.1 0 -0.1 0 
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In the first decoding iteration we would get the following values of the a posteriori log-likelihood 
ratio L1(uk|y) and of the extrinsic information Le2(uk), both at the output of decoder 1, when we have L(uk) 
and Lc yk1 at its input: 

L1(uk|y) -4.74 -3.20 -3.66 1.59 1.45 -0.74 0.04 0.04 -1.63 
L(uk) 0  0   0 0 0 0 0 0 0 
Lc yk1 0.30 -1.90 -2.40 1.20 0.70 -1.00 -0.20 -0.30 -1.10 
Le1(uk) -5.04 -1.30 -1.26 0.39 0.75 0.26 0.24 0.34 -0.53 
L1(uk) -5.04 0.39 0.24 -1.30 0.75 -0.53 -1.26 0.26 0.34 

The values of the extrinsic information (fourth row) were computed subtracting the second and third 
rows from the first (Eq. (18). As we see, the soft information L1(uk|y) provided by decoder 1 would result in 
four errored bits, those occurring when L1(uk|y) is positive (at times k = 4, 5, 7 and 8). This same decoder 
would pass the extrinsic information Le1(uk) to decoder 2 after convenient interleaving – that is, L1(uk) in the 
last row. Note that after this half-iteration we have gained a strong confidence on the decision about the 
first bit due to the large negative values of L1(u1|y) and Le1(u1) – most probably u1 = -1 (well, we already 
know that…). We are not so certain about the other bits, especially those with small absolute values of 
L1(u1|y) and Le1(u1). 

Decoder 2 will now work with the interleaved systematic values ( )
1
P

c kL y , the parity values (2)
kpy and 

the new a priori LLRs L1(uk). The following table presents the decoding results according to Eq. (18), 
where sequence L2(uk) represents the deinterleaved version of Le2(uk) that will act as a more educated guess 
of the a priori LLR L(uk). So L2(uk) will be used as one of the decoder 1 inputs in the next iteration. 

L2(uk|y) -3.90 0.25 0.18 -3.04 1.23 -1.44 -3.65 -0.72 0.04 
L1(uk) -5.04 0.39 0.24 -1.30 0.75 -0.53 -1.26 0.26 0.34 

( )
1
P

c kL y  0.30  1.20   -0.20 -1.90 0.70 -1.10 -2.40 -1.00 -0.30 

Le2(uk) 0.85 -1.34 0.14 0.16 -0.22 0.19 0.01 0.02 0.00 
L2(uk) 0.85 0.16 0.01 -1.34 -0.22 0.02 0.14 0.00 0.19 

How was L2(uk) computed? As said before, the Pi-th element of L2(uk) is the i-th element of the 
original sequence Le2(uk). For example, the fourth element of L2(uk) is equal to 

[ ] [ ]
22

2 24 2
( ) ( ) ( ) 1.34k k e kPL u L u L u⎡ ⎤= = = −⎣ ⎦  

because 4 = P2. 

We can see again that we would still get four wrong bits if we made a hard decision on sequence 
L2(uk|y) after it is reorganized in the correct order through deinterleaving. That sequence, -3.90  -3.04  -3.65  
0.25  1.23  -0.72  0.18  0.04  -1.44, enforces errors in positions 4, 5, 7 and 8. 

The previous procedures should be repeated iteration after iteration. For example, we would get 
Table 4 during five iterations. Shaded (positive) values would yield wrong hard decisions. 

All four initially wrong bits have been corrected just after the third iteration. From then on it is a 
waste of time to proceed further. In fact, the values of the a posteriori log-likelihood ratios stabilize very 
quickly and we gain nothing if we go on with the decoding. 
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Table 4 – Outputs of turbo decoders during five iterations 

Iteration k → 1 2 3 4 5 6 7 8 9 
1 L1(uk|y) -4.74 -3.20 -3.66 1.59 1.45 -0.74 0.04 0.04 -1.63 
2 L1(uk|y) -3.64 -2.84 -3.28 0.11 0.27 -0.95 -0.17 -0.25 -1.40 
3 L1(uk|y) -3.65 -3.00 -3.35 -0.58 -0.34 -1.07 -0.61 -0.63 -1.53 
4 L1(uk|y) -3.85 -3.21 -3.49 -1.02 -0.74 -1.20 -0.93 -0.90 -1.75 
5 L1(uk|y) -4.08 -3.42 -3.64 -1.35 -1.05 -1.32 -1.18 -1.11 -1.95 
1 L(uk|y) -3.90 -3.04 -3.65 0.25 1.23 -0.72 0.18 0.04 -1.44 
2 L(uk|y) -3.61 -2.96 -3.29 -0.41 0.13 -0.97 -0.43 -0.25 -1.48 
3 L(uk|y) -3.75 -3.11 -3.35 -0.87 -0.45 -1.08 -0.80 -0.63 -1.66 
4 L(uk|y) -3.98 -3.32 -3.50 -1.22 -0.85 -1.21 -1.07 -0.90 -1.86 
5 L(uk|y) -4.21 -3.52 -3.65 -1.51 -1.15 -1.33 -1.28 -1.11 -2.06 

Fig. 17 shows graphically the evolution of L1(uk|y) and L(uk|y) with iterations, where we observe all 
sign changes have occurred in the beginning of decoding. 
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Fig. 17 The a posteriori log-likelihood ratios L1(uk|y) (first decoder) and L(uk|y) (second decoder) 

8 Appendix: the theory underlying the BCJR, the log-MAP and 
the max-log-MAP algorithms 

In this Appendix the mathematical developments of the BCJR, log-MAP and max-log-MAP 
algorithms will be presented. All three estimate the encoder’s input bits time after time, in a bit-to-bit basis, 
contrarily to the Viterbi algorithm, which finds the maximum likelihood path through the trellis and from it 
estimates the transmitted sequence. 

Our framework is the same as before: a rate 1/n convolutional code with M states, an N-bit message 
sequence u, a codeword sequence x transmitted over an AWGN channel and a received sequence y. To 
illustrate the developments we will use M = 4 states. 

We shall begin with a mathematical relation between conditional probabilities that we shall find to 
be useful: 

 )(),(),( CBPCBAPCBAP =  (19) 
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This relation is proved applying Bayes’ rule )()(),( BPBAPBAP =  and defining the sets of events 
D = {A,B} e E = {B,C}: 
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8.1 The BCJR, or MAP, algorithm 

In the next sections we will show how to calculate theoretically the variables present in the 
algorithm. A final section will show how the algorithm can be applied in the iterative decoding of 
concatenated codes, of which turbo codes are the most noteworthy example. 

8.1.1 The a posteriori log-likelihood ratio (LLR) )( ykuL  

We want to calculate 
)1(
)1(

ln)(
y
y

y
−=

+=
=

k

k
k uP

uP
uL . If 0)( >ykuL  the decoder will estimate the bit 

uk = +1 was sent, otherwise it will estimate uk = -1 was sent. Now let us observe Fig. 18. It shows a four 
state trellis section between times k-1 and k. There are 2M = 8 transitions between states Sk-1 = s’ and next 
states Sk = s: four result from a -1 input bit (those drawn with a thick line) and the other four result from a 
+1 input bit. Each one of these transitions is due unequivocally to a known bit (just notice in the trellis if 
the branch line is solid or dashed). Therefore, the probabilities that uk = -1 or uk = +1, given our knowledge 
of the sequence y, are equal to the probabilities that the transitions (s’,s) between states correspond to a 
solid or a dashed line, respectively. Since transitions are mutually exlusive – just one can occur at a given 
time – the probability that any one of them occurs is equal to the sum of the individual probabilities, that is, 

∑ ′=−=
0

),()1(
R

yy ssPuP k  

∑ ′=+=
1R

yy ),()1( ssPuP k , 

where R0 and R1 represent, respectively, the set of transitions from state Sk-1 = s’ to state Sk = s originated by 
uk = -1or uk = +1, as Fig. 18 shows. Thus we get: 
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Fig. 18 Trellis section between times k-1 and k 

8.1.2 ),,( yssP ′ is a product αγβ 

The received N symbol sequence y can be partitioned into three subsequences: a past sequence, y<k, 
a current sequence (just one symbol), yk, and a future sequence, y>k, as in Eq. (3). Writing 

),,,,(),,( kkkssPssP ><′=′ yyyy  and using Bayes’ rule we have 
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It happens that if we know the current state Sk = s the received sequence after time k, y>k, will 
depend neither on the previous state s’ nor on the past or current sequence, y<k e yk, since we are 
considering a memoryless channel. Therefore, 

),,,()(),,( kkk ssPsyPssP yyy <> ′=′ . 

Developing the right hand side and noting again that in a memoryless channel if we know the 
previous state s’ the next state s and the current symbol yk do not depend on the past sequence y<k, we get 
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 Probability ),()(1 kk sPs <− ′=′ yα  represents the joint probability that at time k – 1 the state is s’ 
and the received sequence until then is y<k. Probability ( )ssPss kk ′=′ ,),( yγ  represents the probability that 
next state is s and the received symbol is yk given the previous state is s’. Finally, probability 

)()( sPs kk >= yβ  is the conditional probability that, given the current state is s, the future sequence will be 
y>k. 

Thus we will have 
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As explained in the main text, it is convenient to normalize P(s’,s,y). So, instead of using the simple 
three-factor expression αγβ we should use the “safer” expression 
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It would be easy to show that this will not have any effect on the final value of L(uk|y), as it should 
be expected. 

8.1.3 The present: calculation of γ 

With the help of the conditional probabilities relation of Eq. (19) we get for ),( ssk ′γ  
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Let us understand the meaning of each of these two factors. If state s’ is known the probability that 
at the next time one of the two possible states s is reached is equal to the probability that the input bit is 
uk = ±1 (that is, the trellis branch is a solid or a dashed line). So, )()( kuPssP =′ . For instance, if 
P(uk = ±1) = 1/2 and we are in a given state, it is equally likely to reach one of the next states or the other. 

However, if P(uk = +1) = 3/5 then 53)( =′→ ssP
dashed

line

. As far as the other factor, ),( ssP k ′y , is concerned 

we should note that the joint occurrence of the consecutive states sSk ′=−1  e Sk = s is equivalent to the 
occurrence of the corresponding coded symbol xk, that is, )(),( kkk xPssP yy =′ . Therefore, 

 )()(),( kkkk uPxPss y=′γ  (21) 

Let us go back to P(uk). From the definition 
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which can be conveniently expressed as 
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The fraction [ ])(2/)(
1 1 kk uLuL
k eeC +=  is equal to 1/2 if the bits uk = ±1 are equally likely. Either 

way, C1k does not depend on uk being +1 or -1 and so, since it appears both in the numerator and 
denominator of the a posteriori LLR expression (Eq. (20)), it will cancel out in that computation. We will 
come back to the issue shortly. 
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The probability )( kk xP y  that n values yk = yk1 yk2 … ykn are received given n values 

xk = xk1 xk2 … xkn were transmitted will be equal to the product of the individual probabilities )( klkl xyP , 
nl ,,2,1 …= . In fact, in a memoryless channel the successive transmissions are statistically independent: 
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l
klklkk xyPP

1

)()( xy . (23) 

In the very usual case of n = 2 we simply have )()()( 2211 kkkkkk xyPxyPP =xy . 

These probabilities depend on the channel and the modulation in use. With BPSK modulation the 
transmitted signals have amplitudes xklEc = ±Ec, where Ec is the energy transmitted per coded bit. Let us 
consider an AWGN channel with noise power spectral density N0/2 and fading amplitude a. At the 
receiver’s matched filter output the signal amplitude is now kl kl c cy ax E n a E n′ ′ ′= + = ± + , where n’ is 

a sample of gaussian noise with zero mean and variance 20
2 Nn =′σ . Normalizing amplitudes in the 

receiver we get 
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where now the variance of noise cn n E′=  is 2 2
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If we expand Eq. (23) we get 
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The product of factors 
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 does not depend 

either on the uk sign or the codeword xk. In fact, the first factor of the product depends only on the channel, 

the second one depends on the channel and the sequence yk and the third one, in which nx
n

l
kl =∑

=1

2 , 

depends on the channel and the fading amplitude. This means C2k will appear both in the numerator and 
denominator of Eq. (20) and cancels out. 
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The summation ∑
=

n

l
klkl yx

1

 represents the sum of the element-by-element product of transmitted (xk) 

and received (yk) words. If we see each of these words as an n-element vector the summation is just their 
inner product: 
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We had seen that 
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Going back to Eq. (21) we can now write the final expression of ),( ssk ′γ  as it appears in Eq. (9): 
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where we have done kkk CCC 21= . Ck cancels out in the end because C1k and C2k do. 

We already have ),( ssk ′γ  and we need α and β. Let us begin with α. 

8.1.4 The past: calculation of α 

By definition ),()(1 kk sPs <− ′=′ yα , which we conveniently write as ),()( 1+<= kk sPs yα . However 
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From Probability Theory we know that ∑=
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BAPAP ),()( , where the summation adds over all 

possible values of B. Therefore, 
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The same old memoryless channel argument allows us to write  
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However, in order to avoid overflow or underflow it is more convenient to normalize α to its sum 
over all state transitions, that is, computing 
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This normalization does not alter the final LLR result. Now we only have to start from the appropriate 
initial conditions. In an all-zero terminated trellis they are: 
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8.1.5 The future: calculation of β 

The recursive formula for β is obtained the same way. By definition )()( sPs kk >= yβ , which we 

conveniently write as )()( 11 sPs kk ′=′ −>− yβ . The memoryless argument will lead us now to 
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Again it is convenient to normalize β to its sum over all state transitions so instead of using the 
preceding equation we should use  

∑∑∑
∑

′
−

−

′

−
′′

′′
=

′

′

=′

s
k

k

s s
kk

s
kk

k
s

s
sss

sss

s
)(

)(
),()(

),()(

)(
1

1
1

β

β

γβ

γβ

β . 

From the moment we know )(sNβ  we can compute the other values of β. The appropriate initial 
conditions in an all-zero terminated trellis are 
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Several alternatives have been proposed to alleviate the disadvantage of having to wait for the end 
of sequence y to begin calculating β [7]. 
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8.1.6 Iterative decoding 

We have already seen in Section 6 how the BCJR algorithm and its simplifications can be applied in 
the iterative decoding of turbo codes. Let us see now how to reach Eq. (17), the one that expresses L(uk|y) 
as a three-element sum when we work with systematic codes. 

Suppose the first coded bit, xk1, is equal to the information bit uk. Then we can expand Eq. (9), 
repeated here, in order to single out that systematic bit: 
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Let us define the second exponential as the new variable 
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This variable is just 222),( kkc yxL
k ess =′χ  if n = 2. We then get for ),( ssk ′γ : 
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Introducing ),( ssk ′χ in Eq. (4) we will have 
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Sets R1 e R0 are associated with input bits +1 e -1, respectively, as we know. Thus, we may 
substitute these same values of uk in the numerator and denominator. We will get then 
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If we now define 
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we will finally get 

 )()()( 1 kekckk uLyLuLuL ++=y , (27) 

or, alternately, 

 1)()()( kckkke yLuLuLuL −−= y . q.e.d. (28) 

Recall that Le(uk) is the extrinsic information a decoder conveys to the next one in iterative decoding 
(see Fig. 9 again), L(uk) is the a priori LLR of information bits and Lc is the channel reliability value. 

We should point out that actually we do not need to calculate ),( ssk ′χ  to get the extrinsic 
information, the only quantity each decoder conveys to the other. Let us say there are two ways of 
calculating Le(uk): 

• We compute ),( ssk ′χ  by Eq. (24), ),( ssk ′γ  by Eq. (25), αk-1(s’) and βk(s) by recursive equations (10) 
and (11) (or even better, by Eqs. (12) and (13)) and Le(uk) by Eq. (26) – if necessary we compute 
L(uk|y) too (Eq. (27)); 

• We compute ),( ssk ′γ , αk-1(s’), βk(s) and L(uk|y) just like in the BCJR algorithm (that is, using 
Eqs. (9), (10) (or (12)), (11) (or (13)) and (4), respectively) and, by subtraction, we compute Le(uk) 
(Eq. (28). 

The iterative decoding proceeds as described in Section 6. 

8.2 The log-MAP and max-log-MAP algorithms 

In these algorithms additions substitute the BCJR algorithm multiplications with the aid of the 
jacobian logarithm 

 )1ln(),max()ln( baba ebaee −−++=+  (29) 

The jacobian logarithm is approximately equal to max(a,b). In fact, )1ln( bae −−+  is essentially a 
correcting term. The difference between log-MAP and max-log-MAP algorithms lies on the way both treat 
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the jacobian logarithm. The former uses the exact formula of Eq. (29) and the latter uses the approximate 
expression ),max()ln( baee ba ≈+ . Let us unify notation through the function max*(a,b): 
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There is a degradation in performance with the max-log-MAP algorithm due to the approximation. 
That does not happen with the other, which performs exactly like the original BCJR algorithm. According 
to its proponents [5] the log-MAP correcting term )1ln( xe−+  can be stored in a simple eight-valued 
look-up table, for x between 0 and 5, because with more than eight values there is no noticeable 
improvement in performance. 

New variables are defined: 
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Applying natural logarithms to both sides of Eq. (9) we get 
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The term lnCk is irrelevant when calculating L(uk|y). From the recursive equations of α and β we get 
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Please note that with binary codes each summation in Eqs. (31) and (32) contains just two terms. If 
we analyse Ak(s), for example, we see that the max-log-MAP algorithm chooses one of the two branches 
arriving at each state s: the one for which the sum ),()(1 sssA kk ′Γ+′−  is higher. That is, just like in the 
Viterbi algorithm there is a surviving branch and an eliminated branch. The same occurs with Bk-1(s’) but in 
the opposite direction. 

The initial values of A and B in a terminated trellis are: 
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),()(1 sssA kk ′Γ+−  and ),()( sssB kk ′Γ+  can be interpreted as a branch metric: in Ak(s) case the 
metric is computed from the beginning to the end of the trellis, as in the Viterbi algorithm; in Bk(s) case it is 
computed from the end to the beginnning. So, in fact the max-log-MAP algorithm works as two 
simultaneous Viterbi algorithms, one traversing the trellis in one direction and the other traversing it the 
other way. 

From Eq. (5) we immediately get 
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The conditional LLR of Eq. (4) then becomes 
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Note again that the max-log-MAP algorithm uses only one of the branches of each set R0 and R1. 

The jacobian logarithm of Eq. (29) is a two-variable function. So, how to compute the 
log-likelihood ratio L(uk|y) of Eq. (33) with the log-MAP algorithm, where we have more than two 

variables? According to Robertson et al. [5] we can compute the function 
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It would be easy to conclude from the above procedure that the function max* of more than two 
variables can be computed recursively as well [8]. For example, max*(x1,x2,x3) = max*[max*(x1,x2),x3]. 

9 Concluding remarks and acknowlegments 
This is another paper on MAP decoding. Although there is a myriad of papers on the subject too 

numerous to mention – a Google search should be enough to convince anyone – the author hopes his 
approach help make the issue a little bit easier to grasp. In fact, the concepts needed to understand the 
decoding algorithms are not that difficult to apprehend after all. 
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