Advanced Topics

LIE ALGEBRAS
(Date Due: 30thJuly)

ASSIGNMENT 2

Question 1.

Let \mathfrak{L} be the real vector space \mathbb{R}^{3}. Given $x, y \in \mathfrak{L}$, define

$$
[x, y]:=x \times y
$$

where \times denotes the usual cross product of vectors.
Sow that \mathfrak{L} is a Lie algebra and determine its structure constants relative to the standard basis for \mathbb{R}^{3}.

Question 2.

Let δ be a derivation of the Lie algebra \mathfrak{L}. Show that if δ commutes with every inner derivation, then

$$
\delta(\mathfrak{L}) \subseteq \mathcal{C}(\mathfrak{L})
$$

where $\mathcal{C}(\mathfrak{L})$ denotes the centre of \mathfrak{L}.

Question 3.

Let $x \in \mathfrak{g l}(n, \mathbb{F})$ have n distinct eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ in \mathbb{F}. Prove that the eigenvalues of ad_{x} are the n^{2} scalars

$$
\lambda_{i}-\lambda_{j}, \quad(1 \leq i, j \leq n)
$$

(Note that only $n^{2}-n+1$ scalars are paiwise distinct from each other since $\lambda_{i}-\lambda_{i}=0$ for all i.)

