Advanced Topics

LIE ALGEBRAS

ASSIGNMENT 2

Question 1.

Let \mathfrak{L} be the real vector space \mathbb{R}^3 . Given $x, y \in \mathfrak{L}$, define

$$[x,y] := x \times y,$$

where \times denotes the usual *cross product* of vectors.

Sow that \mathfrak{L} is a Lie algebra and determine its structure constants relative to the standard basis for \mathbb{R}^3 .

Question 2.

Let δ be a derivation of the Lie algebra \mathfrak{L} . Show that if δ commutes with every inner derivation, then

$$\delta(\mathfrak{L}) \subseteq \mathcal{C}(\mathfrak{L}),$$

where $\mathcal{C}(\mathfrak{L})$ denotes the *centre* of \mathfrak{L} .

Question 3.

Let $x \in \mathfrak{gl}(n, \mathbb{F})$ have *n* distinct eigenvalues $\lambda_1, \lambda_2, \cdots, \lambda_n$ in \mathbb{F} . Prove that the eigenvalues of ad_x are the n^2 scalars

$$\lambda_i - \lambda_j, \qquad (1 \le i, \ j \le n).$$

(Note that only $n^2 - n + 1$ scalars are paiwise distinct from each other since $\lambda_i - \lambda_i = 0$ for all *i*.)