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Question 1 (16 marks) Answer the following questions and show your work:

(a) Let f be a function f : Z → Z × Z such that f(n) = (2n, n + 3). Verify whether this function is 1-1
and whether it is onto.

(b) Let f be a function f : R3 → R such that f(x, y, z) = xyz. Verify whether this function is 1-1 and
whether it is onto.

(c) Prove that the function f : R− {2} → R− {5} defined by f(x) = 5x+1
x−2 is a bijection.

(d) Consider the functions f : R → R, g : R → R × R defined as f(x) = 1
x2+1 and g(x) = (3x, x2). Find

the formulas for f ◦ f and g ◦ f .

Question 2 (20 marks) Use truth tables to show the following:

(a) whether ¬p ∧ ¬(p→ q) is a tautology, a contradiction or neither.

(b) whether ((p→ q) ∧ (p→ r))→ (p→ (q ∧ r)) is a tautology, a contradiction or neither.

(c) ¬(¬p ∧ q) and q → p are logically equivalent.

(d) (p→ (q → r)) and (q → (p→ r)) are logically equivalent.

Question 3 (15 marks) Use laws of logic (algebraic version) to show the following equivalences (clearly
indicate which law you use in each step):

(a) (p ∧ q) ≡ (q → p).

(b) (p→ (q → r)) ≡ (q → (p→ r))

(c) ((p→ r) ∨ (q → r)) ≡ ((p ∧ q)→ r)

Question 4 (24 marks) Prove the following using the method suggested:

(a) Prove the following either by direct proof or by contraposition:
Let a ∈ Z, if a ≡ 1 (mod 5), then a2 ≡ 1 (mod 5).

(b) Prove the following by contradiction:
Suppose a, b ∈ Z. If 4|(a2 + b2), then a and b are not both odd.

(c) Disprove the following by counterexamples:

• For every natural number n, the integer n2 + 17n + 17 is prime.

• Let A,B and C be sets. If A× C = B × C, then A = B.

(d) Prove the following by cases: For all n ∈ Z, n2 + 3n + 4 is even.

(e) Prove the following by induction:

12 + 32 + 52 + · · ·+ (2n− 1)2 =
n

3
(2n− 1)(2n + 1)
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