PURE MATHEMATICS 212
 Multivariable Calculus

ASSIGNMENT 2

1. [2 marks] Name and sketch the surface: $z=4 x^{2}+y^{2}+8 x-2 y$
2. [4 marks] (a) Find a parametric equation of the curve of intersection of the paraboloid $z=3-x^{2}-y^{2}$ and the plane $z=2 y$.
(b) Find an equation of the orthogonal projection of this curve to the $x y$-plane.
3. [4 marks] The curves below are given by their vector equations. Describe them in Cartesian coordinates. What are their geometric names?
(a) $\mathbf{r}=\left(3 \sin e^{t}\right) \mathbf{i}+\left(3 \cos e^{t}\right) \mathbf{j}$.
(b) $\mathbf{r}=-2 \mathbf{i}+t \mathbf{j}+\left(t^{2}-1\right) \mathbf{k}$.
4. [3 marks] Define the notion of a smooth curve. For which values of the parameter t is the curve

$$
\mathbf{r}=t^{3} \cos (t) \mathbf{i}+\sin \left(t^{2}\right) \mathbf{j}+t^{2} \mathbf{k}
$$

smooth? Justify your answer.
5. [3 marks] Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be differentiable vector-valued functions of t. Prove that

$$
\frac{d}{d t}[\mathbf{u} \cdot[\mathbf{v} \times \mathbf{w})]=\frac{d \mathbf{u}}{d t} \cdot[\mathbf{v} \times \mathbf{w}]+\mathbf{u} \cdot\left[\frac{d \mathbf{v}}{d t} \times \mathbf{w}\right]+\mathbf{u} \cdot\left[\mathbf{v} \times \frac{d \mathbf{w}}{d t}\right]
$$

Hint: Apply the product laws for dot and cross product.
6. [4 marks] (a) Evaluate $\int\left[\left(t e^{t}\right) \mathbf{i}+\ln t \mathbf{j}\right] d t$;
(b) Find the arc length of the curve $\mathbf{r}(t)=(3 \cos t) \mathbf{i}+(3 \sin t) \mathbf{j}+4 t \mathbf{k} ; 0 \leq t \leq 2 \pi$.

