Properties of Matrix Multiplication

Associative Property

1 Matrix multiplication is associative. That is, for any three matrices A, B, and C of appropriate size, the following matrix multiplication equality is true:

$$
(A B) C=A(B C) .
$$

Demonstrate this property for the following three matrices:

$$
A=\left(\begin{array}{rrr}
4 & 3 & 1 \\
-1 & 1 & 3 \\
-2 & -3 & 1
\end{array}\right), \quad B=\left(\begin{array}{rr}
2 & -5 \\
3 & 1 \\
5 & 0
\end{array}\right), \quad \text { and } \quad C=\left(\begin{array}{rrr}
1 & -1 & 2 \\
0 & 6 & 7
\end{array}\right) .
$$

(i) $A B=$?
(ii) $(A B) C=$?
(iii) $B C=$?
(iv) $A(B C)=$?
(v) Your answers in (ii) and (iv) should agree.

Distributive Property

2 Matrix multiplication is distributive. That is, for any four matrices A, B, C and D of appropriate size, the following two matrix multiplication equalities are true:

$$
A(B+C)=A B+A C \quad \text { and } \quad(B+C) D=B D+C D .
$$

Demonstrate this property for the following four matrices:

$$
A=\left(\begin{array}{ccc}
-2 & 7 & 1 \\
3 & -5 & 4
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad C=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 0 \\
4 & 5 & 6
\end{array}\right), \quad \text { and } \quad D=\left(\begin{array}{cc}
3 & -4 \\
5 & 0 \\
-11 & 2
\end{array}\right)
$$

(o) $\quad(B+C)=$?
(i) $A(B+C)=$?
(ii) $\quad A B=$?
(iii) $\quad A C=$?
(iv) $A B+A C=$?
(v) Your answers in (i) and (iv) should agree.
(vi) $(B+C) D=$?
(vii) $\quad B D=$? (viii) $C D=$? (ix) $B D+C D=$?
(x) Your answers in (vi) and (ix) should agree.

Commutative Property

3 Matrix multiplication is not commutative, in general. That is, for any two matrices A and B, it does not necessarily follow that: $B A=A B$. Demonstrate this fact for the following matrices:

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
-2 & 7 & 1 \\
3 & -5 & 4
\end{array}\right), B=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad C=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 3 & 0 \\
4 & 5 & 6
\end{array}\right), \text { and } D=\left(\begin{array}{cc}
3 & -4 \\
5 & 0 \\
-11 & 2
\end{array}\right) \\
& \begin{array}{lll}
\text { (i) } A D=? & \text { (ii) } D A=? \\
\text { (iv) } B C=? & \text { (iii) } A D \stackrel{?}{=} D A
\end{array} \\
& \text { (vii) } A B=?
\end{aligned} \begin{array}{ll}
\text { ? } & \text { (vi) } B C=? \\
= & \text { (viii) } B A=?
\end{array}
$$

4 Double-check all your computations in \#3 using Maple. Zero points if the Maple check does not agree with the hand-calculation. So, if your Maple check does not agree with your hand-computation, then find your error and correct it. Provide a computer printout of both the commands and the output for each check.

Scalar Multiplication Property

5 Any scalar can always be factored out of matrix multiplication. In other words, for any two matrices A and B of appropriate size and for any scalar (number) c, the following is true:

$$
c(A B)=(c A) B=A(c B) .
$$

Demonstrate this fact for the following matrices:

$$
A=\left(\begin{array}{ccc}
-2 & 7 & 1 \\
3 & -5 & 4
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
3 & -4 \\
5 & 0 \\
-11 & 2
\end{array}\right)
$$

(i) $A B=$?
(ii) $-3(A B)=$?
(iii) $(-3 A) B=$?
(iv) $=A(-3 B)=?$
(v) Your answers in (ii), (iii) and (iv) should agree.

