
1 

 

 Laureate Online Education              Software Engineering 

© All right reserved, 2002-2012. The Software Engineering module, in all its parts: 
syllabus, guidelines, lectures, discussion questions, technical notes, images and any 
additional material is copyrighted by Laureate Online Education 

 

Module:  SE                                                 Seminar 7 
 

Seminar 7 Distributed Software Engineering and Service-Oriented Architecture  
 

Study Chapter 18 and 19 
 
Seminar 7 provides you with an understanding of the fundamentals of designing and 
implementing distributed software systems.  The idea of software as a service will be 
introduced.  Web services and service-oriented application development are studied.  

  

Part  1:  Distributed System Architectures 

Business e-environments are evolving such that it is often impossible to know who is 
doing what and where. Today, many of our corporations operate globally, 24 hours a 
day, seven days a week.  We see a rapid melding of a global economy.  Work and tasks 
are quickly updated and changed based on global information, often reducing business 
cycle times to a fraction of previous work-time. The term, information economy, has 
been used to describe the integration of communication and data technology into 
information technology using the Internet as the communication method.   
 
Global corporations can only work through information technology, and the only way 
technology can work is through information systems which are readily available, flexible 
to changing environments, regularly monitored, and represent the "real world”.  
Distributed systems technology allows corporations to create the information systems 
which can be adapted for the needs of 21st century business.   

 It would be difficult to find any large computer-based system today without some type 
of distributed system.  Most information systems distribute processing over several 
processors.  Worldwide, the top priority in the next decade will be updating architectures 
for implementing or improving distributed computing platforms.   

The primary characteristics of a distributed system is the ability to share resources, run 
programs concurrently, and provide systems to run on large and small systems.   They 
also must have a high level of fault tolerance and the ability to hide the distributed 
processing from the user   (transparency).   
 
In 1994, Peter Deutch published 8 fallacies of Distributed Computing.  For years   
Distributed Data Services were built with these in mind: 

1. The network is reliable 



2 

 

2. Latency is zero 
3. Bandwidth is infinite 
4. Network is secure 
5. Topology doesn’t change 
6. There is one administrator 
7. Transport cost is zero 
8. The network is homogeneous 

 
We have learned a lot in 15 years.   We now know that we need to revisit Deutch’s list. 
We are savvier on what it takes to implement a distributed system.   The evolution of 
distributed software engineering has had a significant impact on the implementation of 
distributed systems.  Distributed systems include files systems, database systems, 
operating systems, and the Internet.   
 
The characteristics of the DDS include the hardware, operating systems, languages and 
applications, middleware (abstract level between software components), and the virtual 
machines which communicate with each other.   
 
Distributed Systems offer different configurations for building their concurrency –
simultaneous users on many computers.      All, however, need to be scalable where 
resources can be added or deleted.  Another key factor for DDS is the ability to provide 
a high level of security.  This includes securing data from unauthorized entry, denial of 
attacks, data attacks which affects data integrity.  There also needs to be a high level of 
fault tolerance – recovery from failures (using hardware and data redundancy and 
software rollbacks).   
 
The following sections look at different characteristics of computer systems and how 
they are addressed in distributed systems.   
 
Concurrency 
 
Concurrency is defined as multiple jobs being run at the same time. The key issue in a 
DDS is to ensure the retrievals and updates are done on current instances of the data.  
Otherwise, it results in inconsistencies and poorly informed decisions.  In a distributed 
system, there needs to be processes in place so users do not affect the work of other 
users.  Another factor in concurrency is process synchronization of resources.  The 
traditional method and one which continues to work if implemented correctly is the use 
of hardware or software locks.  In a distributed system, managing transactions is 
another way to manage concurrency.   (Anderson, 2008) 
 
Transactions 
Transactions were discussed in an earlier seminar.  Here, we will look at it from the 
distributed system point of view. A transaction is a unit of work.  It completely finishes or 
it is not done at all. This guarantees the integrity of the data.    
 



3 

 

 A transaction includes several instructions to complete a task in a multi-user 
environment.  It has some of the same characteristics as a transaction in a database, 
but when we move it to a distributed environment, we add external networking 
communication problems and processing problems.  In a distributed system, 
transactions are used for managing all resources.  A 2-phase lock mechanism is used 
to guarantee serialbility.  Each data item has a lock.  Before the transaction can access 
the item, the system checks for a lock.  If it is attached, the system locks out requests 
for the data until the lock is removed.  There are two types of locks – read and write 
locks.  A 2-phase mechanism allows read locks to be released anytime the process is 
done and forces the release of write locks to wait until the transaction is done.  
  
 Once a transaction begins, it ends either in a Commit (resources are released, data is 
saved, and the system returns to a consistent state) or Abort (all resources return to 
previous state).   
 
 
Transparency 
 
Transparency is important in distributed systems because it hides the complexities from 
the user.  They do not want to know where the data is stored, only that their query 
returns the correct data.  They don’t want to know how others in the system are 
changing the data, only that the data they are looking at is current and correct.    
 
 
 Goel (2004) detailed the types of transparency needed for distributed systems.   
 

a.  Access transparency – hides the management of files stored within the system.  
b. Location transparency – hides the physical location of information in the system.  
c. Concurrency transparency – hides the mechanisms that guarantee concurrency.  
d. Replication transparency – hides the process of replicating data and how the 

data is stored.  
e. Failure transparency – allows the system to recover without the users being 

aware of the failure.  
f. Mobility transparency - allows mobile users to resources without knowing where 

the resources are.   
g. Performance transparency – completes automatic load balancing without clients 

being aware.  
h. Scaling transparency – hides the process of growth to the applications.  

 
As can be seen in our list, the key to transparency is, from the user’s point of view, all 
the technical details are hidden under a layer of abstraction.  
 
Fault Tolerance 
 



4 

 

Faults and Failures were discussed in an earlier seminar.    The distributed system is 
more resistant to failure and recovers more quickly because there are multiple sites that 
provide the redundancy to a faster recovery.   
A extreme example can be seen looking at the companies who had their headquarters 
in the twin towers. Those with redundant systems in other geographic locations 
recovered quickly.  This was also seen in New Orleans after the Katrina hurricane.  
Those fully distributed lost resources but the data was recovered quickly.   
 

Distributed Systems Security 
 

There are different approaches to handling security in a distributed system.   The SANS 
Institute assessed three different environments which provide good examples for how 
security is addressed in distributed systems – Java, CORBA, and COM+.   

Java 

Java’s architecture has unique characteristics to build distributed systems having a high 
degree of security.  Java programmers can use the Java language to build systems to 
remotely execute on distributed systems.   Java’s architecture builds these more secure 
systems because the source code is translated into byte code which, in turn, is 
interpreted by the Java Virtual Machine(VM).  Inherent in the systems are security 
checks between the client and the remote server.  Security checks are implemented 
between the remote server and the client executing the application.   One approach is a 
“sandbox” security model implementing security using Java’s APIs (Figure 1).  The VM 
creates this secure “sandbox” where the programs execute.  The sandbox performs a 
variety of checks at runtime inclreasing the security of the system.      (Moreno,  2002) 
 

 
 

Figure 1. The Java Security Model  (based on Moreno, 2002). 

 
 



5 

 

CORBA 
 
CORBA (Common Object Request Broker Architecture) was created by the Object 
Management Group (OMG).  CORBA allows objects from different languages and users 
to communicate.  To do this, CORBA has an Interface Definition Language (IDL) 
creating the bridge between all the interacting objects and users.  Information is sent to 
the IDL mapping the requests to the appropriate user.  “Each object instance has a  
unique entry in the Object Request Broker (ORB) which handles requests between 
objects and between user and objects. Objects with similar security requirements are 
grouped into domains, and a security policy is applied to the domain, which is enforced 
by the ORB. Communication between ORBs is handled by bridges, gateways, and inter-
ORB protocols (Figure 2).” (Moreno, 2002).   
   
 

 
Figure 2 – CORBA Model (Moreno, 2002) 

 
COM+ 
 
COM+ is Microsoft’s distributed architecture. “Clients run an application that connects to 
a server with running COM+ services. This server, in turn, connects to the back-end 
servers.” (Moreno, 2002).    With this architecture clients are able to share resources on 
the COM+ server.  They can use different languages.  Since the COM+ servers have 
the implemented security, the developers don’t need to worry about building security 
into their applications.   
 
 

Client-Server Architectures 

 
In the client-server architecture, as with client/server design, application processing is 
divided into services that are provided by servers and clients using these services.   The 
clients know of servers but servers do not need to know about the clients.  Clients and 
servers are the logical processes in the system.   
 



6 

 

The two implementations of a two-tier client-server model are the thin-client model and 
the fat-client model.   
 

Thin Client 

In a thin-client model, all the processing and managing of the data are completed by the 
server. The client is responsible only for running the software.  This model allows us to 
store data centrally while efficiently distributing information and applications to clients.  
A major advantage to the thin client is the ability to have inexpensive computing boxes 
(some lower than $100 running Linux) on the client side.  
 

Fat-Client 

In this model, the server is only responsible for maintaining and managing the data.  
The software residing on the client machine executes the applications and manages the 
interactions with the system user. 
 
New platforms have provided a way to build a hybrid architecture where pieces of the 
application (such as Java applets) can be downloaded to the client while most of the 
processing continues to be on the server.   
 
The two types of architectures are the two-tier and three-tier architecture.  In the two-
tier, the user interface is on the client and the database management services are on 
the server.   
 
 
  
 
  
 
 
 

Figure 3.  two-tiered client-server architecture. 

 
In the three-tier architecture, the middle tier is between the client and the server and has 
different functions based on the needs of the system.  It may be used for executing 
applications, queuing, and/or database applications. The three-tier architecture reduces 
the flexibility of a system but does improve the productivity.  Thus, the choice is based 
on the individual needs.  (Sadoski, 1997) 

  

Client Server   

Network 



7 

 

 

 

Figure 4. three-tiered client-server architecture. 

 

Summary - Advantages of Client/Server Environment 

 
The client/server environment allows organizations to maximize the benefits of micro-
technology.  PCs can deliver extraordinary computing power at a fraction of cost of 
mainframes. 
 
The architecture allows most of the processing to be done close to the data source and, 
thus, facilitates efficient processing.  It also facilitates the use of intelligent user 
interfaces. (Oracle, 2003) 

 
 
Distributed Architecture Patterns 
 
Designing distributed systems is a complex process.  Not only do we have 
heterogeneous hardware systems, but we also have diverse software and human 
systems.  It is a difficult task.  Over the years, several strong architectural patterns have 
emerged which support the implementation of distributed systems.   
  
Master/Slave Architecture 
 
This pattern has two objects: one Master and many Slaves.  The master sends the work 
(set of computational processes) to a shared structure (such as a queue)  where the 
“slaves” pick up the jobs and process them.  This pattern does a good job of load 
balancing in a distributed system because the workers distribute the load and is 
discussed in the text.   



8 

 

 
Distributed Component Architecture 
 
Distributed object-oriented systems have an architecture that blends object-oriented and 
client/server technologies.  Distributed objects blend the distribution advantages of 
client/server technology with the real-world information contained in object-oriented 
models.  (Sutherland, 1997) 
 
Distributed component architecture allows objects to be distributed across diverse 
networks and allows each part to be integrated into a single system.    Modeling 
business processes is not a matter of modeling organizational charts and company 
policy manuals. Real system modeling requires a model representing the way work is 
actually accomplished, and the ways business is really conducted.   This architecture 
models the real business entities and operations to accomplish work and produce value.  
Object orientation was developed in the 1960s to provide the capability to build models 
reflecting real systems. (Cetus Team, 2004)   CORBA and Java distributed systems can 
be configured as distributed components.  
 
A relatively new concept having an impact on recent distributed object architectures is 
the use of Software Agents.  A software agent is a computer program (object) acting 
“intelligently” to make decisions based on previously defined preferences. The 
uniqueness of the agent is in the way it communicates with other objects – using high-
level declarative messages.   (Purvis, Cranefield, and Ward, 1998) Some researchers 
have made the case that Corba objects are actually agents because they have the 
ability to be “reactive, autonomous, social, and pro-active” -- also the definition of a 
software agent.  Research into the area of Software Agents is just beginning 
  
Peer-to-Peer Systems 
 
We cannot complete a lecture on distributed systems without including something about 
Peer-to-Peer (P2P) systems.  P2P systems are those distributed systems which allow 
servers to communicate with each other through a network.  Many of them are set up in 
a decentralized manner such as Gnutella and Freenet while other are more centralized.  
Most can be categorized with a hybrid approach because part of the functionality is still 
on centralized servers somewhere.    For example, Napster uses special servers that 
perform unique functions, such as a server to hold indexes of files (Yang and Garcia-
Molina, 2001).      
 
Service-Oriented Architecture 
 
Most organizations are facing a crisis in integrating their technology to work seamlessly 
together to provide value-added services. Service-oriented architectures were designed 
to help solve some of these problems.   In service-oriented architectures, the key is to 
provide high-level services to integrate disparate technologies.  One such approach is 
the use of web services. Web Services use something like XML to create connections 



9 

 

between service providers and service consumers.   The three main goals of SOA are 
to build for reuse, build for agility, and build to align with business/IT goals.    
 
 More discussion on Service-Oriented Architecture is found in Part 2 of the lecture.   
The need for this architecture will continue to grow as organizations become more 
complex and geographically dispersed.     
 

Part 2. Service- Oriented Architecture 

    

Service-Oriented Architecture (SOA) was introduced in the previous section.   As 
networks became more stable and the speed became acceptable for production work, 
we saw a new trend in distributed computing – web services.  This is discussed in detail 
in the WA Module.    The key is the modularization of software application functions that 
can be created as services for other applications.   This has been done with a high level 
of abstraction where applications can request a service without knowing how the service 
is implemented; only what its basic task is.    
 
Hashimi (2003) has done significant research on SOA.   He defined three key 
characteristics of a service: 

1.  Platform-independence 
2.  Dynamically located (implementing location transparency ) 
3. Service-independence – “maintains its own state”. 

 
The example of a service in Figure 5 shows how these work;  
 
Suppose I want an on-line tax service to aid in completing my taxes.  I query a directory 
service to find a list of service providers to do taxes online.  Based on a set of criteria, I 
select a service (Figure 5).   

 

Figure  5  Directory service (based on Hashimi (2003) 

   

 



10 

 

 
While web services are concerned with application specifications, SOA is the design 
approach for using the services.  It allows us to create an architecture that models the 
connections between the web services and location transparency.    
  
SOAs are implemented in a variety of environments: Web Pages, Java IDEs, .NET.  All 
have common characteristics: 
 

1.  They have independent interfaces using XML. 
2. They have a web services language to explain the tasks of the services.  
3.   The communication is done with an XML Schema 
4. The services are managed by a registry  (a directory list) in the organization  
5. Each service as certain requirements attached called quality of service (QoS), 

primarily for security purposes.   
 
The text provides a good overview for how services are implemented.  The next 
sections in the lecture address SOA trends.  
 
SOA and Reusable Components 
 
An ongoing theme of the course has been to leverage what we already know to improve 
the productivity and quality of the applications that we build.   One of the main ways of 
doing this is to utilize reusable components, as we mentioned in earlier weeks.  SOAs 
can effectively supply these reusable components.   Since the services in any SOA are, 
by definition, components, and service providers are working toward building as many 
services as they can, the contribution to reuse can be enormous.  In order for this to be 
realized, services must be independent, easy to select based on developer needs, and 
easy to integrate into an enterprise solution.   
 
One way to manage services for reuse is to create a centralized service center.   Using 
this architecture, we organize services in a database which can be searched based on 
criteria.  The service specification is a critical piece since this determines whether the 
service fits the needs.  Services are then provided to clients based on their criteria.  
Because of the complex relationships between services and their integration into 
existing systems, such a service center needs significant computing power to 
manipulate large amounts of data and to provide the integrating services.   
 
Another approach could be a distributed service center.  Here, we still have the ability to 
provide a database for services, but the computing is distributed.  Thus, we can have 
many services being provided concurrently.  The important factor for success is high 
bandwidth.  From the developer’s point of view, it still appears as a service center.   
 
No matter how we set up the infrastructure, services are currently a major trend in 
software reuse.   
 
 



11 

 

Service Engineering 
 
There are many independent factors to take into account when providing a successful 
‘service”.  Thus, it takes an engineering approach to attempt to build a solid solution.  As 
with other activities we have discussed for designing of software applications, design 
patterns can have a positive impact on the effort required to “engineer” a SOA.    
 
There are a several good sources for finding design patterns.  However, one of the best 
sources is OASIS (2010).  OASIS is a non-profit consortium for the advancement and 
standards for Open Source.  One of their committees, SOA Adoption Blueprints, has 
created sample blueprints you can download which includes best practices and patterns 
for SOA architects.   
 
Again, your text has good examples for implementing a service.  There are, however 
many independent factors which can either help in its success or lead to failure.   
 
The external factors to be considered in any SOA are: 

1.  Where the service will be hosted and what types of services are provided – data 
services, integration services, etc 

2. What infrastructure is in place for services to call other services  
3. Network characteristics that affect the ability to provide the services – load 

balancing, etc 
4. What security procedures are in place  
5. What transactional services are provided  
6. What day-to-day management activities are provided (Vektrel, 2008) 

 
These factors build the infrastructure to house the services.   
 
Although we have been working with SOAs for several years, it has only become fully 
realized as a major solution in the last 5 years.  The advantages that web services have 
brought to the IT industry are significant.  “Service-driven enterprises can achieve 
increased efficiency via greater reuse of IT assets, faster delivery of value to the 
business and improved adaptability to gracefully support any expected and non-
expected changes” (Zhu, 2005).   
  
Modeling SOAs 
 
Modeling SOAs starts by modeling three different entities; the service provider, the 
service consumer, and the service broker.  We saw a glimpse of what this would look 
like in Figure 5.   
 
An enterprise modeling approach includes all the parts of an organization that make up 
the enterprise solution.  An example of an enterprise model is shown in Figure 6.  Each 
of the services could be done in-house or outsourced.   
 



12 

 

 
 

Figure 6.  Enterprise Model 
 
To fully model the entire operation, the services represented in figure 6 (Sales, 
Manufacturing, Warehouse, and Finance) would need to be decomposed into greater   
detail.   Jones and Maynard (2005) provide a very good example of how we can create 
the complete model.  
 

 
Summary 
  
The driving force behind SOA is the need to provide software developers with the ability 
to manage and address the ever-changing technology and business needs.   SOAs give 
us the ability to create applications consisting of independent software components tied 
together with web services.  Thus, the greatest benefit we get from SOA is the flexibility 
to respond to changes.   The statistics resulting in the implementation of SOA are very 
good – they demonstrate significant cost-savings and customer satisfaction.   
 

 
 
 
References and Additional Reading 



13 

 

 

 

Anderson, R. (2008)       Chapter 6 Distributed Systems.  Security Engineering: A Guide to Building 
Dependable Distributed Systems.  Wiley & Sons.  2

nd
 Edition.  ISBN 10:0470068526 

http://www.cl.cam.ac.uk/~rja14/Papers/SE-06.pdf  

Barry, D. (n.d.). Web Services and Service-Oriented Architectures.   http://www.service-
architecture.com/index.html  

Cetus Team.(2002)  Distributed Objects & Components: Business Objects. Nov 
http://www.objenv.com/cetus/oo_business_objects.html 

Chung, K.,    Zimmerman, P.  Chandra , S. (2006) What is a thin client?  Searchnetworking.com. March. 
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213135,00.html   

 
CORBA (2009.)  Homepage.  http://www.corba.org/ [Accessed August, 2010] 

Goel, A (2004) Advances in Distributed Systems  An Introduction.  
http://www.eecg.toronto.edu/~ashvin/courses/ece1746/2004/introduction.pdf  

Hashimi, S (2003).  Service-Oriented Arcitecture Explained.  O’REILLY. 
http://ondotnet.com/pub/a/dotnet/2003/08/18/soa_explained.html  

Jones, S & Maynard, P (2005) A Methodology for Service Architectures.  London  © Capgemini 2005 
http://www.oasis-
open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202
%204%20-%20OASIS%20Contribution.pdf  

Moreno, A (2002).  Distributed Systems Security: Java, CORBA, and COM+. SANS Institute.  
http://www.sans.org/reading_room/whitepapers/application/distributed-systems-security-java-corba-com-
plus_28  

OASIS (2010).  OASIS Service Oriented Architectural Adoption Blueprints TC. Organization for the 
Advancement of Structured Information Standards.  http://www.oasis-open.org/committees/soa-
blueprints/faq.php  

  
Oracle. ,( 2003) Application Architecture: Introduction to Client Server Environment. 
http://www.stanford.edu/dept/itss/docs/oracle/10g/server.101/b10743/dist_pro.htm    
 
Purvis, M. ,  Cranefield, S.,  and  Ward, S.  (1998)  Distributed Software Systems: From Objects to 
Agents.    1998 IEEE. Published in the Proceedings of SE:EP’98, January 1998 Dunedin, New Zealand.  
Digital Object Identifier: 10.1109/SEEP.1998.707646 
 
Sadoski, D.  (1997) Client/Server Software Architectures--An Overview  SEI http://www-
rcf.usc.edu/~anthonyb/itp320/clntsvrov.doc  

  

Vektrel LLC (2008).  SOA Service Engineering. 
http://www.vektrel.com/Topics/SoaServiceEng/SoaServiceEng.html   
 
Yang, B & Garcia-Molina (2001).  Comparing Hybrid Peer-To-Peer Systems.  Proceedings of the 27th 
VLDB Conference,  Roma, Italy, 2001.  http://www.dia.uniroma3.it/~vldbproc/060_561.pdf 

http://www.cl.cam.ac.uk/~rja14/Papers/SE-06.pdf
http://www.service-architecture.com/index.html
http://www.service-architecture.com/index.html
http://www.objenv.com/cetus/oo_business_objects.html
http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213135,00.html
http://www.corba.org/
http://www.eecg.toronto.edu/~ashvin/courses/ece1746/2004/introduction.pdf
http://ondotnet.com/pub/a/dotnet/2003/08/18/soa_explained.html
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://www.oasis-open.org/committees/download.php/15071/A%20methodology%20for%20Service%20Architectures%201%202%204%20-%20OASIS%20Contribution.pdf
http://www.sans.org/reading_room/whitepapers/application/distributed-systems-security-java-corba-com-plus_28
http://www.sans.org/reading_room/whitepapers/application/distributed-systems-security-java-corba-com-plus_28
http://www.oasis-open.org/committees/soa-blueprints/faq.php
http://www.oasis-open.org/committees/soa-blueprints/faq.php
http://www.stanford.edu/dept/itss/docs/oracle/10g/server.101/b10743/dist_pro.htm
http://www-rcf.usc.edu/~anthonyb/itp320/clntsvrov.doc
http://www-rcf.usc.edu/~anthonyb/itp320/clntsvrov.doc
http://www.vektrel.com/Topics/SoaServiceEng/SoaServiceEng.html
http://www.dia.uniroma3.it/~vldbproc/060_561.pdf


14 

 

 

 
Zhu, H. (2005) . Building Reusable Components with Service-Oriented Architectures   Paper presented at 
the 2005 IEEE International Conference on Information Reuse and Integration (IEEE IRI-2005), Las 
Vegas, Nevada, USA 

  
 
Reading Assignments 
The assigned readings for this seminar are Chapter 18, Chapter 19.   


