Overview:

Understand TCP socket programing by developing a (multi-threaded) Web server. You
may use Python, Java, or C++ as the programing language. The project manuals for
Python and Java are attached to this document, which have provided partial code.

Submission Guide:

Name: xxx

ID: xxx

Operating system: Windows/Linux
Programing language: Python/Java/C++
Compiling instructions: xxx

Running instructions: xxx

The code must be well-documented. The grader will run your code on one host and test
with a standard web browser from another host in the same network. The grader will
use Windows and Linux-based platforms for testing. In case of problems or if you use an
uncommon platform, you may need to bring your own computer and demonstrate the
code.

Grading Criteria:

Successful compilation 10%
Correct logic 10%
Helpful comments 10%
Code clarity 10%
Handling HTML file 15%
Handling .jpeg image 15%
Handling .pdf File 15%
Handle file not found error 15%
Extra credit: multi-threaded web server 15%

Getting Started with Python

Python is a general purpose, high level programming language that is used in a variety of application
domains. The Python language has a very clear and expressive syntax as well as a large and
comprehensive library. Although Python is often used as a scripting language, it can also be used in a
wide range of non-scripting contexts. It’s available for all major Operating Systems: Windows,
Linux/Unix, OS/2, Mac, Amiga, among others. Python is free to use, even for commercial products,
because of its OSl-approved open source license.

Python 2 or Python 3?

Python has two standard versions, Python 2 and Python 3. The current production versions (July 2012)
are Python 2.7.3 and Python 3.2.3. Python 2.7 is the status quo. We recommend you use Python 2.7 for
completing the assignments.

Installing Python
Python can be downloaded directly from the official website http://www.python.org/ . This is the program
that is used to write all your python code. On the left side of the website there is a download section

) About \W/ Python (programr » X/ Wireshark - Wikipe » . [Q3 Python Programim 4 The 5 Best Websit @ Python Programim ‘ (") Divelnto Pyth
/ 3
€ = C O wwwpythonorg
-" Google

@ python

Python Programming Language — Official Website

Python is a programming language that lets you work more quickly and integrate your systems more
effectively. You can learn to use Python and see almost inmediate gains in productivity and lower
maintenance costs.

Python runs on Windows, Linux/Unix, Mac OS X, and has been ported to the Java and NET virtual machines.

COMMUNITY »

FOUNDATION “ Python is free to use, even for commercial products, because of its OSl-approved open source license.
CORE DEVELOPMENT * New to Python or choosing between Python 2 and Python 32 Read Python 2 or Python 3.

Help

The Python Software Foundation holds the intellectual property rights behind Python, underwrites the PyCon

Package Index 3 : :
conference, and funds other projects in the Python community.

Quick Links (2.7.3)
» Documentation

] Read more, -or- download Python now
» Windnws Installer

Clicking the download link will present you with two versions of Python, namely python 2 and python 3;
you can also chose the version specific to your operating system. Most popular Linux distributions come
with Python in the default installation. Mac OS X 10.2 and later includes a command-line version
of Python, although you'll probably want to install a version that includes a more Mac-like graphical

interface.
Installing Python on Windowa

1. Double-click the installer, Python-2.xxx.yyy.exe. The name will depend on the version
of Python available when you read this.

2. Select run.
Step through the installer program.

4. 1If disk space is tight, you can deselect the HTMLHelp file, the utility scripts (Tools/), and/or the
test suite (Lib/test/).

5. If you do not have administrative rights on your machine, you can select Advanced Options, then
choose Non-Admin Install. This just affects where Registry entries and Start menu shortcuts are
created.

6. If you see the following that means the installation is complete.

#8) Python 27.3 Setup) |

Complete the Python 2.7.3 Installer

Specal Windows thanks to:
Mark Hammond, without whose years of freely
shared Windows expertise, Python for Windows
would still be Python for DOS.

pgth;:}n

Click the Finish button to exit the Installer.

windows

< Eack Cancel

7. After the installation is complete, close the installer and select Start->Programs->Python 2.3-
>IDLE (Python GUI). You'll see something like the following:

2% *Python Shell o o

File Edit Shell Debug Options Windows Help
Python 2.7.2 (default, Apr 10 2012, 23:31:2&) [MSC vw.1500 32 bit (Intel)] on win_:J

3z
Type "copyright™, "credits™ or "license ()™ for more information.

>»> print "hello world™
hello world
3>

Lr: 5|Cok 4

Other Window Installation Options

ActiveState makes a Windows installer for Python called ActivePython, which includes a complete
version of Python, an IDE with a Python-aware code editor, plus some Windows extensions

for Python that allow complete access to Windows-specific services, APls, and the Windows Registry.
ActivePython is freely downloadable, although it is not open source. You recommend you use this for
writing more complicated programs.

Download ActivePython from http://www.activestate.com/Products/ActivePython/.If you are using

Windows 95, Windows 98, or Windows ME, you will also need to download and install Windows

Installer 2.0 before installing ActivePython.

Installing Python On Mac
The latest version of Mac OS X, Lion, comes with a command line version preinstalled. This version is
great for learning but is not good for development. The preinstalled version may be slightly out of date, it

does not come with an XML parser, also Apple has made significant changes that can cause hidden bugs.

Rather than using the preinstalled version, you’ll probably want to install the latest version, which also

comes with a graphical interactive shell.

Running the Preinstalled Mac Version
Follow these steps in order to use the preinstalled version.

1. Go to Finder->Applications->Utilities.

2. Double click Terminal to get a command line.

e 00 (28] Utilities
<> [22 | = [l im = o (Q
FAVORITES = Screensaver + free 4 AppleScript Editor
@ AirDrop &) skype M Audio MIDI Setup
E All My Files @ Smat?tConvener w Bluetooth File E_xchange
. S Spotify 2| Boot Camp Assistant
| Stickies % ColorSync Utility
EI Desktop i Supermarke.. gement FREE BE Console
BB Documents System Preferences & DigitalColor Meter
§* Telephone & Disk Utility
© Downloads 7 TextEdit ¥ Grab
H Movies @ Time Machine « Grapher
ﬂ Miisic [Uninstall Genieo = Java Preferences
) (521 utilities » 4 Keychain Access
Pictures ® uTorrent Q. Migration Assistant
SHAEET ¥ VirtualBox @ Network Utility Mame Terminal
o [Ef wake Up Time @ Podcast Capture Kl_ﬂd Application
= [E] watchCam Viewer & Podcast Publisher Size 18.3 MB
= jeet-pc [=] wiki Offline Lite % RAID Utility sl b
@ preeti-vaio B wireshark = System Information Last“;:e:zg :ﬁi‘::; i:g; ::
@ Worldexplorer e St
W Xcode | VoiceOver Utility
= Yahoo! Messenger [x] x11

3. Type python at the command prompt

4. Now you can try out some basic codes here

Ine

copyright", "credits" or "license" for more information.

= print "hello world"

i 1 [1[N ["1 |j

Installing the Latest Version on the Mac

As said earlier Python comes preinstalled on Mac OS X, but due to Apple’s release cycle, its often a year
or two old. The “MacPython” community highly recommends you to upgrade your Python by
downloading and installing a newer version.

Go to http://www.python.org/download/ and download the version suitable for your system from among a

list of options.

The downloaded file should look like this

800 __| Python 2.7.3

TRT =1 v THT

Build.txt License.txt Python.mpkg ReadMe.txt

Double click the “Python.mpkg” file. The installer may prompt you for your administrative username and
password.

Step through the installer program.
You can choose the location at which it is to be installed.

e 00 = Install Python

Standard Install on “Macintosh HD"

9 Introduction
This will take 77.5 MB of space on your computer.

Click Install to perform a standard installation of
this software on the disk "Macintosh HD".

| Change Install Location... |

| Customize | | GoBack | | Instal |

0006 ws Install Python

Installing Python

@ Introduction

Finishing the Installation...

Running Python Framework installer script...

Co Back Continue

After the installation is complete, close the installer and open the Applications folder , search for

Python and you’ll see the Python IDLE i.e. the standard GUI that comes with the package.

Alternative Packages for Mac 0OS X
ActiveState ActivePython (commercial and community versions, including scientific computing
modules). ActivePython also includes a variety of modules that build on the solid core.

Enthought Python Distribution The Enthought Python Distribution provides scientists with a
comprehensive set of tools to perform rigorous data analysis and visualization.

Example of a Basic Python Program
The interface “Idle” that we opened so far is only useful for testing out basic python commands or can

otherwise be used as a calculator, it basically means the program cannot be saved this way.

To save a program and execute it we need to follow the following instruction:
On the top left corner of “Idle” select File -> New Window.

The new window that pops out will allow you to save and execute your python programs. You can write
your python code in this window. Try the following:

[~ ™
i name.py - C\Users\jeet\Desktop\name.py E@g

File Edit Format Run Options Windows Help

X = raw_input ("Enter name: "} ;I
print "Hey ™ 4+ x

raw_input ("Press enter to exit")

-

Ln: &4 (Col D

We cannot run this program without saving it. A saved python file has an icon that looks like this

You run the program by pressing F5 or Run-> Run Module. You can also run the program by simply
double clicking the file icon. When you open a saved file to run the program, you should see:

BRSNS

1 | CAPython2M\python.exe

Enter name: Michael
Hey Michael
Press enter to exit_

Learning Python Programming
Python is easy to learn, easy to use and very powerful. There are a lot of web resources for learning the

language, most of which are entirely free. We recommend Sthurlow.com's A Beginner's Python Tutorial:

http://www.sthurlow.com/python/

Socket Programming Assignment 1: Web Server

In this lab, you will learn the basics of socket programming for TCP connections in Python: how to create
a socket, bind it to a specific address and port, as well as send and receive a HIT'TP packet. You will also
learn some basics of HTTP header format.

You will develop a web server that handles one HTTP request at a time. Your web server should accept
and parse the HTTP request, get the requested file from the server’s file system, create an HTTP response
message consisting of the requested file preceded by header lines, and then send the response directly to
the client. If the requested file is not present in the server, the server should send an HTTP “404 Not
Found” message back to the client.

Code

Below you will find the skeleton code for the Web server. You are to complete the skeleton code. The
places where you need to fill in code are marked with #Fill in start and #Fill in end. Each place
may require one or more lines of code.

Running the Server

Put an HTML file (e.g., HelloWorld.html) in the same directory that the server is in. Run the server
program. Determine the IP address of the host that is running the server (e.g., 128.238.251.26). From
another host, open a browser and provide the corresponding URL. For example:

http://128.238.251.26:6789/HelloWorld.html

‘HelloWorld.html’ is the name of the file you placed in the server directory. Note also the use of the port
number after the colon. You need to replace this port number with whatever port you have used in the
server code. In the above example, we have used the port number 6789. The browser should then display
the contents of HelloWorld.html. If you omit ":6789", the browser will assume port 80 and you will get
the web page from the server only if your server is listening at port 80.

Then try to get a file that is not present at the server. You should get a “404 Not Found” message.

What to Hand in

You will hand in the complete server code along with the screen shots of your client browser, verifying
that you actually receive the contents of the HTML file from the server.

Skeleton Python Code for the Web Server

#import socket module
from socket import *
serverSocket = socket (AF_INET, SOCK_ STREAM)
#Prepare a sever socket
#Fill in start
#Fill in end
while True:
#Establish the connection

print 'Ready to serve...'

connectionSocket, addr = #Fill in start #Fill in end
try:

message = #Fill in start #Fill in end

filename = message.split() [1]

f = open(filename[l:])

outputdata = #Fill in start #Fill in end
#Send one HTTP header line into socket

#Fill in start

#Fill in end

#Send the content of the requested file to the client
for i in range (0, len(outputdata)):

connectionSocket.send (outputdatalil])
connectionSocket.close ()
except IOError:

#Send response message for file not found
#Fill in start

#Fill in end

#Close client socket

#Fill in start

#Fill in end

serverSocket.close ()

Optional Exercises

1.

Currently, the web server handles only one HTTP request at a time. Implement a multithreaded server
that is capable of serving multiple requests simultaneously. Using threading, first create a main thread
in which your modified server listens for clients at a fixed port. When it receives a TCP connection
request from a client, it will set up the TCP connection through another port and services the client
request in a separate thread. There will be a separate TCP connection in a separate thread for each
request/response pair.

Instead of using a browser, write your own HTTP client to test your server. Your client will connect
to the server using a TCP connection, send an HTTP request to the server, and display the server
response as an output. You can assume that the HTTP request sent is a GET method.

The client should take command line arguments specifying the server IP address or host name, the
port at which the server is listening, and the path at which the requested object is stored at the server.
The following is an input command format to run the client.

client.py server host server port filename

Project 1 (Java Manual): Building a Multi-
Threaded Web Server

This exercise is due to Kurose and Ross (the authors of the textbook). It is also available via the
textbook's companion web site.

In this lab we will develop a Web server in two steps. In the end, you will have built a multi-
threaded Web server that is capable of processing multiple simultaneous service requests in
parallel. You should be able to demonstrate that your Web server is capable of delivering your
home page to a Web browser.

We are going to implement version 1.0 of HTTP, as defined in REC 1945, where separate HTTP
requests are sent for each component of the Web page. The server will be able to handle multiple
simultaneous service requests in parallel. This means that the Web server is multi-threaded. In
the main thread, the server listens to a fixed port. When it receives a TCP connection request, it
sets up a TCP connection through another port and services the request in a separate thread. To
simplify this programming task, we will develop the code in two stages. In the first stage, you will
write a multi-threaded server that simply displays the contents of the HTTP request message that
it receives. After this program is running properly, you will add the code required to generate an
appropriate response.

As you are developing the code, you can test your server from a Web browser. But remember
that you are not serving through the standard port 80, so you need to specify the port number
within the URL that you give to your browser. For example, if your machine's name is
host.someschool.edu, your server is listening to port 6789, and you want to retrieve the file
index.html, then you would specify the following URL within the browser:

http://host.someschool.edu:6789/index.html

If you omit ":6789", the browser will assume port 80 which most likely will not have a server
listening on it.

When the server encounters an error, it sends a response message with the appropriate HTML
source so that the error information is displayed in the browser window.

Web Server in Java: Part A

In the following steps, we will go through the code for the first implementation of our Web Server.
Wherever you see "?", you will need to supply a missing detail.

Our first implementation of the Web server will be multi-threaded, where the processing of each
incoming request will take place inside a separate thread of execution. This allows the server to
service multiple clients in parallel, or to perform multiple file transfers to a single client in parallel.
When we create a new thread of execution, we need to pass to the Thread's constructor an
instance of some class that implements the Runnable interface. This is the reason that we
define a separate class called Ht tpRequest. The structure of the Web server is shown below:

import java.io.* ;
import java.net.* ;
import java.util.* ;

public final class WebServer

{

public static void main (String argv|[]) throws Exception

{

}
}

final class HttpRequest implements Runnable

{
}

Normally, Web servers process service requests that they receive through well-known port
number 80. You can choose any port higher than 1024, but remember to use the same port
number when making requests to your Web server from your browser.

public static void main(String argv[]) throws Exception

{
// Set the port number.
int port = 6789;

Next, we open a socket and wait for a TCP connection request. Because we will be servicing
request messages indefinitely, we place the listen operation inside of an infinite loop. This means
we will have to terminate the Web server by pressing ~C on the keyboard.

// Establish the listen socket.
2

// Process HTTP service requests in an infinite loop.
while (true) {

// Listen for a TCP connection request.
?

When a connection request is received, we create an Ht tpRequest object, passing to its
constructor a reference to the Ssocket object that represents our established connection with the
client.

// Construct an object to process the HTTP request message.
HttpRequest request = new HttpRequest(?);

// Create a new thread to process the request.
Thread thread = new Thread(request);

// Start the thread.
thread.start () ;

In order to have the Ht tpRequest object handle the incoming HTTP service request in a
separate thread, we first create a new Thread object, passing to its constructor a reference to
the HttpRequest object, and then call the thread's start () method.

After the new thread has been created and started, execution in the main thread returns to the
top of the message processing loop. The main thread will then block, waiting for another TCP
connection request, while the new thread continues running. When another TCP connection
request is received, the main thread goes through the same process of thread creation regardless
of whether the previous thread has finished execution or is still running.

This completes the code in main (). For the remainder of the lab, it remains to develop the
HttpRequest class.

We declare two variables for the HttpRequest class: CRLF and socket. According to the HTTP
specification, we need to terminate each line of the server's response message with a carriage
return (CR) and a line feed (LF), so we have defined CRLF as a convenience. The variable
socket will be used to store a reference to the connection socket, which is passed to the
constructor of this class. The structure of the HttpRequest class is shown below:

final class HttpRequest implements Runnable
{
final static String CRLF = "\r\n";
Socket socket;

// Constructor
public HttpRequest (Socket socket) throws Exception
{

this.socket = socket;

}

// Implement the run() method of the Runnable interface.
public void run()

{

}

private void processRequest () throws Exception

{

}

In order to pass an instance of the Ht tpRequest class to the Thread's constructor,
HttpRequest mustimplement the Runnable interface, which simply means that we must
define a public method called run () that returns void. Most of the processing will take place
within processRequest (), which is called from within run ().

Up until this point, we have been throwing exceptions, rather than catching them. However, we
can not throw exceptions from run (), because we must strictly adhere to the declaration of run ()
in the Runnable interface, which does not throw any exceptions. We will place all the processing
code in processRequest (), and from there, throw exceptions to run (). Within run (), we
explicitly catch and handle exceptions with a try/catch block.

// Implement the run() method of the Runnable interface.

public void run ()
{
try |
processRequest () ;
} catch (Exception e) {
System.out.println(e);
}

Now, let's develop the code within processRequest (). We first obtain references to the
socket's input and output streams. Then we wrap InputStreamReader and BufferedReader
filters around the input stream. However, we won't wrap any filters around the output stream,
because we will be writing bytes directly into the output stream.

private void processRequest () throws Exception

{
// Get a reference to the socket's input and output streams.
InputStream is = ?;
DataOutputStream os = ?;

// Set up input stream filters.
2

BufferedReader br = ?;

Now we are prepared to get the client's request message, which we do by reading from the
socket's input stream. The readLine () method of the Buf feredReader class will extract
characters from the input stream until it reaches an end-of-line character, or in our case, the end-
of-line character sequence CRLF.

The first item available in the input stream will be the HTTP request line. (See Section 2.2 of the
textbook for a description of this and the following fields.)

// Get the request line of the HTTP request message.
String requestlLine = ?;

// Display the request line.
System.out.println () ;
System.out.println (requestline);

After obtaining the request line of the message header, we obtain the header lines. Since we
don't know ahead of time how many header lines the client will send, we must get these lines
within a looping operation.

// Get and display the header lines.

String headerLine = null;

while ((headerlLine = br.readlLine()).length() !'= 0) {
System.out.println (headerLine);

We don't need the header lines, other than to print them to the screen, so we use a temporary
String variable, headerLine, to hold a reference to their values. The loop terminates when the
expression

(headerLine = br.readLine()) .length ()

evaluates to zero, which will occur when headerLine has zero length. This will happen when
the empty line terminating the header lines is read. (See the HTTP Request Message diagram in
Section 2.2 of the textbook)

In the next step of this lab, we will add code to analyze the client's request message and send a
response. But before we do this, let's try compiling our program and testing it with a browser. Add
the following lines of code to close the streams and socket connection.

// Close streams and socket.
os.close();

br.close () ;

socket.close () ;

After your program successfully compiles, run it with an available port number, and try contacting
it from a browser. To do this, you should enter into the browser's address text box the IP address
of your running server. For example, if your machine name is host.someschool.edu, and you
ran the server with port number 6789, then you would specify the following URL:

http://host.someschool.edu:6789/

The server should display the contents of the HTTP request message. Check that it matches the
message format shown in the HTTP Request Message diagram in Section 2.2 of the textbook.

Web Server in Java: Part B

Instead of simply terminating the thread after displaying the browser's HTTP request message,
we will analyze the request and send an appropriate response. We are going to ignore the
information in the header lines, and use only the file name contained in the request line. In fact,
we are going to assume that the request line always specifies the GET method, and ignore the
fact that the client may be sending some other type of request, such as HEAD or POST.

We extract the file name from the request line with the aid of the StringTokenizer class. First,
we create a StringTokenizer object that contains the string of characters from the request line.
Second, we skip over the method specification, which we have assumed to be "GET". Third, we
extract the file name.

// Extract the filename from the request line.

StringTokenizer tokens = new StringTokenizer (requestlLine);
tokens.nextToken(); // skip over the method, which should be "GET"
String fileName = tokens.nextToken();

// Prepend a "." so that file request is within the current directory.
fileName = "." + fileName;

Because the browser precedes the filename with a slash, we prefix a dot so that the resulting
pathname starts within the current directory.

Now that we have the file name, we can open the file as the first step in sending it to the client. If
the file does not exist, the FileInputStream () constructor will throw the
FileNotFoundException. Instead of throwing this possible exception and terminating the
thread, we will use a try/catch construction to set the boolean variable fileExists to false.
Later in the code, we will use this flag to construct an error response message, rather than try to
send a nonexistent file.

// Open the requested file.
FileInputStream fis = null;

boolean fileExists = true;
try |
fis = new FileInputStream(fileName) ;
} catch (FileNotFoundException e) {
fileExists = false;

}

There are three parts to the response message: the status line, the response headers, and the
entity body. The status line and response headers are terminated by the character sequence
CRLF. We are going to respond with a status line, which we store in the variable statusLine,
and a single response header, which we store in the variable contentTypeLine. In the case of
a request for a nonexistent file, we return 404 Not Found in the status line of the response
message, and include an error message in the form of an HTML document in the entity body.

// Construct the response message.
String statusLine = null;

String contentTypeline = null;
String entityBody = null;

if (fileExists) {

statuslLine = ?;
contentTypeline = "Content-type: " +
contentType (fileName) + CRLE;
} else {
statuslLine = ?;
contentTypeline = ?;
entityBody = "<HTML>" +

"<HEAD><TITLE>Not Found</TITLE></HEAD>" +
"<BODY>Not Found</BODY></HTML>";

When the file exists, we need to determine the file's MIME type and send the appropriate MIME-
type specifier. We make this determination in a separate private method called contentType (),
which returns a string that we can include in the content type line that we are constructing.

Now we can send the status line and our single header line to the browser by writing into the
socket's output stream.

// Send the status line.
os.writeBytes (statuslLine);

// Send the content type line.
os.writeBytes (?);

// Send a blank line to indicate the end of the header lines.
os.writeBytes (CRLF) ;

Now that the status line and header line with delimiting CRLF have been placed into the output
stream on their way to the browser, it is time to do the same with the entity body. If the requested
file exists, we call a separate method to send the file. If the requested file does not exist, we send
the HTML-encoded error message that we have prepared.

// Send the entity body.
if (fileExists) {
sendBytes (fis, os);
fis.close();
} else {
os.writeBytes (?);

}

After sending the entity body, the work in this thread has finished, so we close the streams and
socket before terminating.

We still need to code the two methods that we have referenced in the above code, namely, the
method that determines the MIME type, contentType (), and the method that writes the
requested file onto the socket's output stream. Let's first take a look at the code for sending the
file to the client.

private static void sendBytes (FileInputStream fis, OutputStream os)
throws Exception

{
// Construct a 1K buffer to hold bytes on their way to the socket.

byte[] buffer = new byte[1024];
int bytes = 0;

// Copy requested file into the socket's output stream.
while ((bytes = fis.read(buffer)) != -1) {

os.write (buffer, 0, bytes);
}

Both read () and write () throw exceptions. Instead of catching these exceptions and handling
them in our code, we throw them to be handled by the calling method.

The variable, buf fer, is our intermediate storage space for bytes on their way from the file to the
output stream. When we read the bytes from the FileInputStream, we check to see if read ()
returns minus one, indicating that the end of the file has been reached. If the end of the file has
not been reached, read () returns the number of bytes that have been placed into buffer. We
use the write () method of the OutputStream class to place these bytes into the output
stream, passing to it the name of the byte array, buf fer, the starting point in the array, 0, and
the number of bytes in the array to write, bytes.

The final piece of code needed to complete the Web server is a method that will examine the
extension of a file name and return a string that represents it's MIME type. If the file extension is
unknown, we return the type application/octet-stream.

private static String contentType (String fileName)
{
if (fileName.endsWith (".htm") || fileName.endsWith (".html")) {
return "text/html";
}

return "application/octet-stream";

}

There is a lot missing from this method. For instance, nothing is returned for GIF or JPEG files.
You may want to add the missing file types yourself, so that the components of your home page
are sent with the content type correctly specified in the content type header line. For GIFs the
MIME type is image/gif and for JPEGs it is image/jpeg.

This completes the code for the second phase of development of your Web server. Run the
server from a a directory with some sample html files and try viewing the files with a browser from
a different computer in the network. Remember to include a port specifier in the URL, so that your
browser doesn't try to connect to the default port 80. Once this part is done, make sure that the
web server behaves reasonably when the HTTP request includes methods that are not
implemented. For example, if client evokes a method other than GET, your server should send
back to the client a response message with status code 501 and phrase "Not Implemented." It is
enough to support text/html as the content type for the purpose of grading.

