[image: Project 2]Project 2
	Instructions
	

	The second project involves completing and extending the C++ program that evaluates statements of an expression language contained in the module 3 case study (see attachment, Project 2.zip).
The statements of that expression language consist of an arithmetic expression followed by a list of assignments. Assignments are separated from the expression and each other by commas. A semicolon terminates the expression. The arithmetic expressions are fully parenthesized infix expressions containing integer literals and variables. The valid arithmetic operators are +, –, *, /. Tokens can be separated by any number of spaces. Variable names begin with an alphabetic character, followed by any number of alphanumeric characters. Variable names are case sensitive. This syntax is described by BNF and regular expressions in the case study.
The program reads in the arithmetic expression and encodes the expression as a binary tree. After the expression has been read in, the variable assignments are read in and the variables and their values of the variables are placed into the symbol table. Finally the expression is evaluated recursively.
Your first task is to complete the program provided by providing the three missing classes, Minus, Times and Divide.
Next, you should extend the program so that it supports relational and logical expression operators as defined by the following extension to the grammar:
<exp> -> '(' <operand> <op> <operand> ')' | '(' <operand> '!' ')'
<op> -> '+' | '-' | '*' | '/' | '>' | '<' | '=' | '&' | '|'
Note that there are a few differences in the use of these operators compared to their customary use in the C family of languages. There differences are:
· The logical operators use single symbols not double, for example the and operator is & not &&
· The negation operator ! is a postfix operator, not a prefix one
· There are only three relational operators not the usual six and the operator for equality is = not ==
Like C and C++, any arithmetic expression can be interpreted as a logical value, taking 0 as false and anything else as true.
Your final task is to make the following two modifications to the program:
· The program should accept input from a file, allowing for multiple expressions arranged one per line. Some hints for accomplishing this transformation will be provided in the conference
· All results should be changed from double to int. In particular the evaluate function should return an int.
You may assume that all input to the program is syntactically correct. Your program must compile with Microsoft Visual C++.
Just to make sure not misses anything, for Project 2 you must submit:
- All source code files (zipped); do not include obj files, executables, etc.
[bookmark: _GoBack]- A document containing the screenshot showing the output of your program against the input file I provided you in What_to_Do.doc.

	Start Date
	

	Feb 9, 2014 1:00 AM

	Due Date
	

	Mar 9, 2014 11:59 PM

[image: https://learn.umuc.edu/d2l/img/0/Shared.Main.actHide.png?v=10.1.0.475-82]Hide Rubrics
Rubric Name: Assignment Rubric
	
		
	
	
	

	Criteria
	Exceeds
	Meets
	Does not meet

	Design
	20 points

(18-20 points)
Employs Modularity (including proper use of parameters, use of local variables etc.) most of the time
Employs correct & appropriate use of programming structures (loops, conditionals, classes etc.) most of the time
Efficient algorithms used most of the time
Excellent use of object-oriented design
	17 points

(15-17 points)
Employs Modularity (including proper use of parameters, use of local variables etc.) some of the time
Employs correct & appropriate use of programming structures (loops, conditionals, classes etc.) some of the time
Efficient algorithms used some of the time
Good use of object-oriented design
	14 points

(0-14 points)
Rarely employs Modularity (including proper use of parameters, use of local variables etc.)
Rarely employs correct & appropriate use of programming structures (loops, conditionals, classes etc.)
Poorly structured and inefficient algorithms
Rarely uses good object-oriented design

	Functionality
	40 points

(36-40 points)
Program fulfills all functionality
All requirements were fulfilled
Extra effort was apparent
	35 points

(29-35 points)
Program fulfills most functionality
Most requirements were fulfilled
	28 points

(0-28 points)
Program does not fulfill functionality
Few requirements were fulfilled

	Test
	20 points

(18-20 points)
Comprehensive test plan
	17 points

(15-17 points)
Good test plan included
	14 points

(0-14 points)
No test plan included

	Documentation
	20 points

(18-20 points)
Excellent comments
Comprehensive lessons learned
Excellent possible improvements included
Excellent approach discussion and references
	17 points

(15-17 points)
Good comments
Some lessons learned
Some possible improvements included
Some approach discussion
	14 points

(0-14 points)
No comments
No lessons learned
No possible improvements
No approach discussion

	Overall Score
	Exceed
90 or more
	Meets
70 or more
	Does not meet
0 or more

	
	
	
	

image1.gif

image2.png

