

	ITECH 2100 / 6100
Programming 2
School of Science, Information Technology and Engineering
	[image:]

[image:]

Assignment 2
Teaching Period 20, 2012
Assignment Overview:

This assignment requires you to do supply a GUI front end for the classes that you wrote for Assignment 1. The theme will be Students, Staff and Courses. Note that this is a programming exercise only. It is designed to test your understanding of various aspects of Java programming. It is not intended to be a model of what happens in the real world – so don’t go changing things because “it makes more sense”.
You will be required to develop your application using Java in the Eclipse environment. You will need to zip the whole project up when you are finished and submit it electronically by the due date. You will also need to submit a report (both electronically and as a hard copy).
Task 1

Create a new project in Eclipse called ‘Assignment 2’.
Create a package called ‘people’ within this project. Download the start up classes and put them into this package. These classes are similar to the ones you wrote for assignment 1 but they have been modified somewhat, so make sure you use the ones provided.
Create a second package called ‘task01’. Within this package provide classes which perform the following tasks.
TestUniApplication.
· Create a class, called TestUniApplication, that causes a JFrame window to appear when the application first starts. The window, that appears when the program is executed, should be appropriately sized, titled and located on the screen. The class should have a private instance variable of type Vector (not ArrayList) called students.
· Provide a menu, called Students, with the following menu items
· Add Student
· List Students
· Exit
· Provide the following functionality when each of the menu items is selected
· Add Student – a modal dialog box, called AddStudent, should appear. The details for this dialog box appear below.
· List Students – a modal dialog box, called ListStudents, should appear. The details for this dialog box appear below.
· Exit – the application will close.
· Provide a pushbutton, called Exit, which provides the same functionality as the menu item with the same name.
Add Student Dialog
· This dialog should be modal and appear when the Add Student menu item of TestUniApplication is selected. It should be appropriately located, sized and titled.
· Provide text fields to provide enough information to create a Student object. This should include the Student’s Name, Address but not the Student ID. It should not include courses at this stage. Each of the text fields should be appropriately labelled. Furthermore, the setting out of the controls on the window should be aesthetically pleasing (it should look good). The BoxLayout and GridLayout might be able to help you with this.
· Provide a button called save, in the south of the dialog. When this button is clicked the information in the textfields is used to create a Student object. The Student Id should be calculated as the number of students currently stored in the Students Vector plus 1000. This number should be preceded by the letter ‘S’. Thus the first student added should have the Student Id S1000. The Student object should be stored in the students Vector in TestUniApplication. The window should then be disposed of allowing control to return to the TestUniApplication window.
· Provide a second button called cancel which disposes of the dialog allowing control to return to TestUniApplication without creating a new Student object.
List Students Dialog
· This dialog should be modal and appear when the List Students menu item of TestUniApplication is selected. It should be appropriately located, sized and titled.
· The dialog box should have similar text fields and labels to that of the Add Student dialog.
· A JList object should be used to enable the user to view a list of Student objects currently in the students Vector.
· When an item in the List is selected, the details associated with that Student should be used to populate the text fields in the dialog.
· Provide the following pushbuttons in the south of the window
· Save – will enable any updates to the text fields to be saved to the appropriate Student. Thus if the student Fred changes his name to James then the save button will save this change and the next time the list opens this change should appear.
· Cancel – will dispose of the window returning control to TestUniApplication.

Task 2
Create a third package called ‘task02’. Copy the TestUniApplication, AddStudentDialog and ListStudentDialog across to this new package. Make the following modifications to TestUniApplication
· Provide a second menu called File with the following menu items.
· A menu item called save. When this item is selected, the whole Vector is stored to a file using serialisation. Use a FileChooser object for this. The starting directory for the FileChooser object should be c:\\input.
· A menu item called open. When this item is selected, a FileChooser object appears which enables the user to open a file that was previously save (using the ‘save’ button). The Vector object should be read from the file, and its contents added to whatever is currently in the main Vector collection.
· A menu item called empty that will remove all Students currently in the Vector. A message box should appear to confirm with the user if this is the action they want taken.
Make the following modifications to ListStudentDialog
· Add a new button (called remove) to remove the selected Student. When this button is clicked a message box should appear asking whether the user is sure that they want to delete the student. If the user selects ‘yes’ the Student should be removed from the underlying Vector. The window should then close and control return to the main window.
· Note that if you click the remove button with no item selected in the list, the program will crash with an ArrayOutOfBoundsException. While there are several ways of dealing with this, the program should use a try/catch block that provides a message dialog (in the handler) telling the user that an item must be selected.

Allocated Marks: See Course Description
Due Date: See Course Description
Please refer to the Course Description for information relating to late assignments and special consideration.
Plagiarism:
Please refer to the Course Description for information regarding Plagiarism.
Assignment Submission:
Assignments must be submitted by the due date and your assignment should be completed according to the General Guidelines for Presentation of Academic Work (http://www.ballarat.edu.au/aasp/student/learning_support/generalguide/).
The following criteria will be used when marking of your assignment:
· successful compilation
· successful completion the required tasks
· adherence to the guidelines provided
· quality of code that adheres to the programming standards for the Course; including:
· comments and documentation
· code layout
· meaningful variable names
You are required to provide the following documentation, contained in an appropriate folder:
· a statement of what has been completed and acknowledgement of the names of all people (including other students and people outside of the university) who have assisted you and details on what parts of the assignment that they have assisted you with
· a table of contents and page numbers
· list of references (including websites, the text book and any other resources) used (APA style); please clearly specify if none have been used.
· a printed copy of your code (this may be included as an Appendix). Please include this because we can provide more feedback this way

In addition to submitting a printed copy of your written report into your tutor’s assignment box, you should also submit the following using Moodle:
· an electronic copy of your code. Zip up the project itself and submit with the name <surname><idNo>.zip
· a copy of your report (surnameStudentIDAssign1.doc)

Student ID:	_______________________ Student Name:	______________________________________

	Task 1
	(63)

	TestUniApplication appropriately titled, located etc (3 marks)
	

	Menu System set up properly (5 marks)
	

	AddStudentsDialog and ListStudentsDialog appear when menu items (5 marks)
	

	Program terminates when push button or menu item selected (3 marks)
	

	AddStudentDialog is appropriately titled, located etc and is modal (3 marks)
	

	Controls set up on Window in an aesthetically pleasing way (5 marks)
	

	Save button creates a Student object from the text fields - stores in Vector (7 marks)
	

	Student Id calculated correctly and added to Student object (5 marks)
	

	Cancel button exits window and returns control to main window (3 marks)
	

	ListStudentDialog is appropriately titled, located etc and is modal (3 marks)
	

	Controls set up on Window in an aesthetically pleasing way (3 marks)
	

	List Object appears with all current students listed (3 marks)
	

	Text fields populated appropriately when list item selected (5 marks)
	

	Student Id field disabled (2 marks)
	

	Save button causes updates to be stored permanently in Vector (6 marks)
	

	Cancel button returns control to main window (2 marks)
	

	Task 2
	(37)

	Second menu set up correctly (2 marks)
	

	Save causes Vector (as a whole) to be saved to file (6 marks)
	

	Open reads Vector object from file and replaces current Vector (6 marks)
	

	Filechooser objects used for above two operations (5 marks)
	

	Menu item to empty current Vector (3 marks)
	

	Menu item to remove Selected Item (4 marks)
	

	Message boxes to confirm that items should be removed (5 marks)
	

	Try/Catch block to deal with ArrayIndexOutOfBoundsException (6 marks)
	

	Marks Deducted
	

	Stylistic code considerations – variable names, setting out, indenting, use of methods etc.
	

	
	

	
	

	Total /20
	

	
	/100

	CRICOS Provider No. 00103D
	ITECH 2100/6100 Assignment 2
	Page 1 of 6

image1.jpeg
University of Ballarat
Learn to succeed

image2.jpeg

